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CORRIGENDUM TO “EMBEDDINGS IN G(1, 3)”

A. PAPANTONOPOULOU

As was pointed out by N. Goldstein in MR 84i, Lemma 2.2 in [3] is incorrect. We
give here a revised version of the main theorem in [3]. In the proof we avoid Lemma
2.2 and use instead [2, Theorem 2.3 and Corollary 2.4], [1, Corollary IV.18], and
Castelnuovo’s bound on the genus of a curve in P”. In the revised theorem the
restriction to surfaces that are not projections from a higher P” is removed.

THEOREM. Let Y be a nonsingular surface in G C P* of degree < 8, and let (a, b)
be its class in the Chow ring A(G) of G. Then one of the following holds:
(i)d=1,(a,b)=(1,0), Y =P%
(i) d=2,(a,b)=(1,1),Y = F;
(i) d = 3,(a,b)=(2,1), Y = F;
(iv) d = 4, and either (a,b) = (2,2) and Y = F,, F,, or the del Pezzo S,, or else
(a,b) = (1,3) and Y = the Veronese surface;
v)d=5,(a,b)=(2,3) and Y = F, with 3 or 7 points blown up;
(vi) d = 6, (a, b) = (3,3), and either Y = F, with 2 or 6 points blown up, or Y is
a geometrically ruled surface withp, = —1, or Y = G N\ P* N S, and is a K3 surface;
(vil) d = 7, and either Y is geometrically ruled with p, = —3, or Y is ruled with 2
points blown up with p, = —3, or Y is ruled with 4 or 6 points blown up with
p,= —1, or Y =F, with 8 points blown up, or Y = the cubic surface with S points
blown up, or K* = —12 + 6p,;
(viii) d = 8, and either (a,b) = (4,4), and Y = F, with 6 or 10 points blown up, or
Y is geometrically ruled with p, = —3, or Y is ruled with 4 points blown up with
p, = —1, or Y is a complete intersection of three quadrics, or Y =G NP*N S, isa
surface of general type; or (a,b) = (2,6) and Y is geometrically ruled with p, = —1,;
or (a,b) = (3,5) and Y is ruled with 3 points blown up withp, = —1.

To facilitate the reading of the proof, we list here some facts we use.

I. CASTELNUOVO’S BOUND ON THE GENUS. Let C be a nonsingular curve of degree
d, C c P", not lying in any P""!, Then g < m(m — 1)(n — 1)/2 + me where
m=[d—1/n—1]ande=(d—1)—m(n —1).

II. CRITERION FOR A SURFACE TO BE RULED [1, Corollary V1.18]. S is ruled if and
only if there is a curve C C S, not an exceptional divisor, such that C - K < 0.
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III. CURVES ON NONRATIONAL RULED SURFACES. (1) [2, Theorem 2.3]: Let a:
Y - T be a nonrational ruled surface, C C Y an irreducible curve, and m the
degree of m: C — T, with m > 1. Then

2m
m-—1

2
C* <

(s(C) - 1).

(2) [2, Corollary 2.4]: Let C and Y be as above. Then either

(@) C=T and the embedding of C C Y is equivalent to a section of the
geometrically ruled surface m: P(E) = T and (C?), = (T¢) p(g), OF

(b) C* < 4g(C) — 4.

IV. FURTHER EQUATIONS. With the notation as in [3, p. 584], let s be the number
of points in X with r, =1, ¢ the number of points in X with r,=2 and
¢ !(p) = E, one exceptional divisor, and u the number of points in X with r,=2
and ¢7!(p) = E, U E,, two exceptional divisors. Assume that for all p € X, r, < 2.
Then

3) X2 =m@2n — me)= C? + s + 4t + Su,

@ 28(X)—2=X>=X2/m = 2m(p,(Y,) + 1),

(5) g(X)=g(C)+1t+u,

6) K,z,o =Ki+r,

(MHr=s+1t+2u

PrROOF OF THEOREM. (i) and (ii) are obvious.

(iii) If d = 3, then Y C P4 by I g(C) = 0, HK = —5; Il implies that Y is ruled,
and III implies p, = 0, and the proof in [3] for d = 3 applies.

(iv) If d =4 and Y ¢ P*, then, by I, g(C) = 0, HK = —6; II implies that Y is
ruled, and III implies that p, = 0, and the proof in [3] for d = 4 applies.

(v) If d=5and Y ¢ P*, then, by I, g(C) < 1. Suppose g(C) = 0. Then KH =
—7 and Y is a rational surface by II and III, but [3, (2)] leads to a contradiction.
Therefore g(C) =1, KH = -5, and II implies that Y is ruled. If p, # 0, then by
1I(2), p,= —1, C is a section, X> = C?, and Y is geometrically ruled. Hence,
K? =0, and this contradicts [3, (2)]. Therefore p, = 0, and the proof in [3] for
d=5,Y ¢ P* applies.

If d=5and Y c P4 g(C)=0 or 2 by [3, Proposition 1.2]. Suppose g(C) = 0.
Then KH = —7 and Y is a rational ruled surface by II and III. Finally, by [3, (3)
and (2)] we get a contradiction. Hence, g(C) =2, KH = —3, and Y is ruled. If
p, # 0, then, by III, p, = —2, K?= —8, and this contradicts [3, (2)]. Hence,
g(C) =2, p, = 0, and the proof in [3] for d = 5, Y C P* applies.

(vi)Ifd=6and Y ¢ P* then, by ], g(C) < 2.If g(C) =0, then KH = —8, and
IT and III imply that Y is a rational ruled surface, and this contradicts [3, (2)]. If
g(C)=1, then KH = —6, and Y is ruled. If p, = 0, then by [3, Proposition 1.3]
m < 3 and r, =1, and by [3, (2)] K?=7or 6. If K?=1, then, by (3) and (6),
X*=17; by (5), g(X)=g(C)=1; and by (4), 0=7 — 7/m — 2m, which is
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impossible. Hence, K? = 6, (a, b) = (3,3), and, by (4), 0 = 8 — 8/m — 2m, which
implies m = 2. If p,# 0, then, by II and III, Y is geometrically ruled with
p,=-1, m=1e=0,n=3,and (a,b) = (3,3). If g(C) =2 with p, # 0, then,
by II and III, Y is geometrically ruled with p, = —2, and this contradicts [3, (2)].
Hence, if g(C) = 2, then Y is a rational ruled surface and the proof in [3] for d = 6
applies.

(vii) If d = 7and Y ¢ P*, then, by I, g(C) < 3. If g(C) = 0, then KH = —9 and
Y is a rational ruled surface, which contradicts [3, (2)]. If g(C) = 1, then KH = -7,
and if p, = 0, then by [3, (2)], (a,b) = (3,4) and Y is geometrically ruled, and, by
@), 2g(C)—2=0=7-17/m — 2m, which is impossible. Hence, if g(C) =1,
then p, # 0, and, by III, p, = —1, K 2 = 0, and this contradicts [3, (2)].

If g(C) =2 and p, = 0, then by [3, (2)], K* = 6 or 4, and, by [3, Proposition 1.3},
m < 3, whence r = 1. Hence, by (3) X?=9or 11 and, by (4),2=9 - 9/m — 2m
or2 =11 — 11/m — 2m, and both are impossible. Hence, ifg(C) = 2, then p, # 0,
and, by II and III, Y is geometrically ruled with p, = —2, C* =7 = 2n — e, and
T, - C=n — e > 5, since T, is a nonsingular curve of genus 2; but this contradicts
the fact that e > p, = —2.

Hence, if d = 7, then g(C) = 3and KH = —3.1If p, # 0, then, by III, m < 2. If
m =1, then r, = 1, g(X) = g(C), and, by (4), p, = — 3. Hence, by [3, (2)], Y is of
type (2,5) and is geometrically ruled with e = —1, n = 3, or of type (3,4) with
K?= —18.If m =2, by (3)-(5), we get 9 + 8p, = s + u > 0. Therefore p, = —1
and, by [3, (2)], K* = —4 or —6.If p, = 0, then the proof in [3] for d = 7 applies.

(viii) If 4 = 8 and Y ¢ P*, then, by I, g(C) < 5. Suppose g(C) = 0. Then p, = 0
and [3, (2)] leads us to a contradiction. If g(C) = 1, then by [3, (2)], p, < 0, and, by
I, p, = —1; hence K? < 0, and this contradicts [3, (2)]. If g(C) = 2 with p, = 0,
then, by [3, (2)], K2 =6 or 7, and by [3, Proposition 1.3], m < 4; hence, r,=1,
and, by (4),2 =10 — 10/m — 2mor2 = 9 — 9/m — 2m, and both are impossible.
Hence, if g(C) = 2, then p, < 0, and, by III, C is a section, Y is geometrically ruled
with p, = —2, and K2 = —8; but this is impossible by [3, (2)]. Therefore if d = 8
and Y ¢ P4 then3 < g(C) < 5.

If g(C)= 3 with p, = 0, then, by [3, Proposition 1.3], m < 4. If m < 4, then
r,=1, and by (5), g(X) = 3,and, by (4),4 =8 + r — (8 + r)/m — 2m; but, by [3,
()], K* = 6,3, or 2, which are impossible. If m = 4, then r, < 2, and, by (3)-(5),
3s + 4t + Tu = 24, and, by (7), r = 6 or 7 are the only solutions. Hence, by [3, (2)],
r=6, K?=2, and (a,b) = (4,4). If g(C) =3 with p, < 0 and Y is geometrically
ruled, then, by [3, (2)], p, = —1 and (a, b) = (2,6) or p, = —3 and (a, b) = (4,4).
Since Y is assumed geometrically ruled, we get from (3) and (4) that p,= —1
implies 4 = 8 — 8/m; hence, m =2, e= -1, n=1,and p,= —3 imply4 =8 —
8/m + 4m; hence, m=1, e=0, n=4. If g(C)=3 with p, <0 and Y not
geometrically ruled, then, by III, m =2 and, by (3)-(5), 8 + 8p,=s+u> 0.
Hence, p, = —1 and Y is either of type (3,5) with K 2 = -3, or of type (4,4) with
K? = —4.1f g(C) > 3, then the proof in [3] for d = 8 applies.
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