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CORRIGENDUM TO " EMBEDDINGS IN (7(1,3)"

A. PAPANTONOPOULOU

As was pointed out by N. Goldstein in MR 84i, Lemma 2.2 in [3] is incorrect. We

give here a revised version of the main theorem in [3]. In the proof we avoid Lemma

2.2 and use instead [2, Theorem 2.3 and Corollary 2.4], [1, Corollary IV.18], and

Castelnuovo's bound on the genus of a curve in P". In the revised theorem the

restriction to surfaces that are not projections from a higher P" is removed.

Theorem. Let Y be a nonsingular surface in G c P5 of degree  < 8, and let (a, b)

be its class in the Chow ringA(G) of G. Then one of the following holds:

(i)d=l,(a,b) = (l,0),Y=P2;

(ii) d = 2, (a, b) = (1,1), Y = F0;

(iii)d=3,(a,b) = (2,l),Y=Fl;

(iv) d = 4, and either (a, b) = (2,2) and Y = F0, F2, or the del Pezzo S4, or else

(a, b) = (1,3) and Y = the Veronese surface;

(v) d = 5, (a, b) = (2,3) and Y = Fe with 3 or 1 points blown up;

(vi) d = 6, (a, b) = (3,3), and either Y = Fe with 2 or 6 points blown up, or Y is

a geometrically ruled surface with pa= — 1, or Y = G n P4 n S3 and is a K3 surface;

(vii) d = 1, and either Y is geometrically ruled with pa= —3, or Y is ruled with 2

points blown up with pa= —3, or Y is ruled with 4 or 6 points blown up with

pa= — 1, or Y= Fe with 8 points blown up, or Y = the cubic surface with 5 points

blown up, or K2 = —12 + 6pa;

(viii) d = 8, and either (a,b) = (4,4), and Y = Fe with 6 or 10 points blown up, or

Y is geometrically ruled with pa= — 3, or Y is ruled with 4 points blown up with

pa = -1, or Y is a complete intersection of three quadrics, or Y = G n P4 n S4 is a

surface of general type; or (a, b) = (2,6) and Y is geometrically ruled with pa = -1;

or (a,b)= (3,5) and Y is ruled with 3 points blown up with pa= — 1.

To facilitate the reading of the proof, we list here some facts we use.

I. Castelnuovo's bound on the genus. Let C be a nonsingular curve of degree

d, C c P", not lying in any P""1. Then g < m(m — l)(n — l)/2 + me where

m = [d — \/n — 1] and e = (d — 1) — m(n — 1).

II. Criterion for a surface to be ruled [1, Corollary VI.18]. S is ruled if and

only if there is a curve C a S, not an exceptional divisor, such that C • K < 0.

Received by the editors January 8, 1985 and, in revised form, February 19, 1985.

1980 Mathematics Subject Classification. Primary 14M15; Secondary 14J99, 14E25.

®1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

533



534 A. PAPANTONOPOULOU

III. Curves on nonrational ruled surfaces. (1) [2, Theorem 2.3]: Let tr:

Y -* T be a nonrational ruled surface, C c Y an irreducible curve, and m the

degree of 77: C -* T, with m > 1. Then

(2) [2, Corollary 2.4]: Let C and y be as above. Then either

(a) C = T and the embedding of C c Y is equivalent to a section of the

geometrically ruled surface ir; P(E) -» F and (C2)y = (To2)«-«' or

(b) C2 < 4g(C) - 4.

IV. Further equations. With the notation as in [3, p. 584], let s be the number

of points in X with r = 1, . the number of points in X with r_ = 2 and

<p-1(/>) = F, one exceptional divisor, and u the number of points in X with r_ = 2

and <p-1(p) = F, U F2, two exceptional divisors. Assume that for all p g X, rp < 2.

Then

(3) *2 = m(2n - me) = C2 + s + At + 5«,

(4) 2g(X) -2 = X2- X2/m - 2m(Pa(Y0) + 1),

(5) g(X) = g(C) + t + u,

(6) K2o = K2 + r,

(7) r m s + t + lu.

Proof of Theorem, (i) and (ii) are obvious.

(id) If d = 3, then Y c P4; by I g(C) = 0, HK - -5; II implies that 7 is ruled,

and III implies p_ = 0, and the proof in [3] for d = 3 applies.

(iv) If d = 4 and Y £ P4, then, by I, g(C) = 0, i/AT = -6; II implies that 7 is

ruled, and III implies that pa = 0, and the proof in [3] for d = 4 applies.

(v) If d = 5 and 7 £ P4, then, by I, g(C) < 1. Suppose g(C) = 0. Then _<__7 =

— 7 and 7 is a rational surface by II and III, but [3, (2)] leads to a contradiction.

Therefore g(C) = 1, KH = -5, and II implies that 7 is ruled. If pa ¥= 0, then by

111(2), pa = -1, C is a section, X2 = C2, and 7 is geometrically ruled. Hence,

K2 = 0, and this contradicts [3, (2)]. Therefore pa = 0, and the proof in [3] for

d = 5, 7 £ P4 applies.

If d = 5 and 7 c P4, g(C) = 0 or 2 by [3, Proposition 1.2]. Suppose g(C) = 0.

Then KH = — 1 and 7 is a rational ruled surface by II and III. Finally, by [3, (3)

and (2)] we get a contradiction. Hence, g(C) = 2, KH = -3, and 7 is ruled. If

pa # 0, then, by III, pa= -2, K2 = -8, and this contradicts [3, (2)]. Hence,

g(C) = 2, pa = 0, and the proof in [3] for d = 5, 7 c P4 applies.

(vi) If d = 6 and 7 € P4, then, by I, g(C) < 2. If g(C) = 0, then KH = - 8, and

II and III imply that 7 is a rational ruled surface, and this contradicts [3, (2)]. If

g(C) = 1, then KH = -6, and 7 is ruled. If pa = 0, then by [3, Proposition 1.3]

m < 3 and rp = 1, and by [3, (2)] K2 = 1 or 6. If K2 = 7, then, by (3) and (6),

X2 = 1;  by (5),   g(X) = g(C) = 1;   and by (4), 0 = 7- 1/m - 2m, which is
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impossible. Hence, K2 = 6, (a, b) = (3,3), and, by (4), 0 = 8- 8/w - 2m, which

implies m = 2. If pa # 0, then, by II and III, 7 is geometrically ruled with

pa = -1, m = 1, e = 0, zz = 3, and (a, £>) = (3,3). If g(C) = 2 with pa # 0, then,

by II and III, 7 is geometrically ruled with pa= —2, and this contradicts [3, (2)].

Hence, if g(C) = 2, then 7 is a rational ruled surface and the proof in [3] for d = 6

applies.

(vii) If d = 7 and 7 € P4, then, by I, g(C) < 3. If g(C) = 0, then KH = -9 and

7 is a rational ruled surface, which contradicts [3, (2)]. If g(C) = 1, then KH = — 7,

and if pa = 0, then by [3, (2)], (a,b) = (3,4) and 7 is geometrically ruled, and, by

(4), 2g(C)-2 = 0 = 7- 7/m -2m, which is impossible. Hence, if g(C) = 1,

then pa ¥= 0, and, by III, pa= — 1, K2 = 0, and this contradicts [3, (2)].

If g(C) = 2 and pa = 0, then by [3, (2)], K2 = 6 or 4, and, by [3, Proposition 1.3],

m < 3, whence /- = 1. Hence, by (3) X2 = 9 or 11 and, by (4), 2 = 9- 9/m - 2m

or 2 = 11 - 11/zrz - 2zn, and both are impossible. Hence, ifg(C) = 2, then pa # 0,

and, by II and III, 7 is geometrically ruled with pa = -2, C2 = 1 = 2n - e, and

T0 ■ C = n — e S- 5, since F0 is a nonsingular curve of genus 2; but this contradicts

the fact that e > pa = —2.

Hence, if d = 7, then g(C) = 3 and KH = - 3. If pa # 0, then, by III, m < 2. If

m = 1, then r_ = 1, g(A") = g(C), and, by (4), pa = -3. Hence, by [3, (2)], 7 is of

type (2,5) and is geometrically ruled with e = -1, zi = 3, or of type (3,4) with

K2 = -18. If m = 2, by (3)-(5), we get 9 + 8pa = s + u > 0. Therefore pa = -1

and, by [3, (2)], K2 = — 4 or — 6. If pa = 0, then the proof in [3] for d = 7 applies.

(viii) If d = 8 and 7 £ P\ then, by I, g(C) < 5. Suppose g(C) = 0. Then pa = 0

and [3, (2)] leads us to a contradiction. If g(C) = 1, then by [3, (2)], pa < 0, and, by

III, pa= -1; hence K2 < 0, and this contradicts [3, (2)]. If g(C) = 2 with pa = 0,

then, by [3, (2)], K2 = 6 or 7, and by [3, Proposition 1.3], m < 4; hence, rp = 1,

and, by (4), 2 = 10 - 10/zzz - 2z»? or 2 = 9 - 9/m — 2m, and both are impossible.

Hence, if g(C) = 2, then pa < 0, and, by III, C is a section, 7 is geometrically ruled

with pa = —2, and K2 = -8; but this is impossible by [3, (2)]. Therefore if d = 8

and 7 £ P4, then 3 < g(C) < 5.

If g(C) = 3 with pa = 0, then, by [3, Proposition 1.3], m < 4. If w < 4, then

r_ = 1, and by (5), g(X) = 3, and, by (4), 4 = 8 + r-(8 + r)/m - 2m; but, by [3,

(2)], K2 = 6,3, or 2, which are impossible. If m = 4, then r_ < 2, and, by (3)-(5),

3j + 4? + 7w = 24, and, by (7), r = 6 or 7 are the only solutions. Hence, by [3, (2)],

r = 6, K2 = 2, and (a, zj) = (4,4). If g(C) = 3 with pa < 0 and 7 is geometrically

ruled, then, by [3, (2)], pa = -1 and (a,b) = (2,6) or pa = -3 and (a, b) = (4,4).

Since 7 is assumed geometrically ruled, we get from (3) and (4) that pa = — 1

implies 4=8- 8/zrz; hence, m = 2, e = -1, « = 1, and pa = - 3 imply 4=8-

%/m + 4m; hence, m = \, e = 0, « = 4. If g(C) = 3 with pa < 0 and 7 not

geometrically ruled, then, by III, m = 2 and, by (3)-(5), 8 + 8pa = 5 + u > 0.

Hence, pa = -1 and 7 is either of type (3,5) with AT2 = - 3, or of type (4,4) with

K2 = -4. If g(C) > 3, then the proof in [3] for d = 8 applies.
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