CORRIGENDUM TO "EMBEDDINGS IN $G(1,3) "$

A. PAPANTONOPOULOU

As was pointed out by N. Goldstein in MR 84i, Lemma 2.2 in [3] is incorrect. We give here a revised version of the main theorem in [3]. In the proof we avoid Lemma 2.2 and use instead [2, Theorem 2.3 and Corollary 2.4], [1, Corollary IV.18], and Castelnuovo's bound on the genus of a curve in \mathbf{P}^{n}. In the revised theorem the restriction to surfaces that are not projections from a higher \mathbf{P}^{n} is removed.

Theorem. Let Y be a nonsingular surface in $G \subset \mathbf{P}^{5}$ of degree $\leqslant 8$, and let (a, b) be its class in the Chow ring $A(G)$ of G. Then one of the following holds:
(i) $d=1,(a, b)=(1,0), Y=\mathbf{P}^{2}$;
(ii) $d=2,(a, b)=(1,1), Y=F_{0}$;
(iii) $d=3,(a, b)=(2,1), Y=F_{1}$;
(iv) $d=4$, and either $(a, b)=(2,2)$ and $Y=F_{0}, F_{2}$, or the del Pezzo S_{4}, or else $(a, b)=(1,3)$ and $Y=$ the Veronese surface;
(v) $d=5,(a, b)=(2,3)$ and $Y=F_{e}$ with 3 or 7 points blown up;
(vi) $d=6,(a, b)=(3,3)$, and either $Y=F_{e}$ with 2 or 6 points blown up, or Y is a geometrically ruled surface with $p_{a}=-1$, or $Y=G \cap \mathbf{P}^{4} \cap S_{3}$ and is a $K 3$ surface;
(vii) $d=7$, and either Y is geometrically ruled with $p_{a}=-3$, or Y is ruled with 2 points blown up with $p_{a}=-3$, or Y is ruled with 4 or 6 points blown up with $p_{a}=-1$, or $Y=F_{e}$ with 8 points blown up, or $Y=$ the cubic surface with 5 points blown up, or $K^{2}=-12+6 p_{a}$;
(viii) $d=8$, and either $(a, b)=(4,4)$, and $Y=F_{e}$ with 6 or 10 points blown up, or Y is geometrically ruled with $p_{a}=-3$, or Y is ruled with 4 points blown up with $p_{a}=-1$, or Y is a complete intersection of three quadrics, or $Y=G \cap \mathbf{P}^{4} \cap S_{4}$ is a surface of general type; or $(a, b)=(2,6)$ and Y is geometrically ruled with $p_{a}=-1$; or $(a, b)=(3,5)$ and Y is ruled with 3 points blown up with $p_{a}=-1$.

To facilitate the reading of the proof, we list here some facts we use.
I. Castelnuovo's bound on the genus. Let C be a nonsingular curve of degree $d, C \subset \mathbf{P}^{n}$, not lying in any \mathbf{P}^{n-1}. Then $g \leqslant m(m-1)(n-1) / 2+m \varepsilon$ where $m=[d-1 / n-1]$ and $\varepsilon=(d-1)-m(n-1)$.
II. Criterion for a surface to be ruled [1, Corollary VI.18]. S is ruled if and only if there is a curve $C \subset S$, not an exceptional divisor, such that $C \cdot K<0$.

[^0]III. Curves on nonrational ruled surfaces. (1) [2, Theorem 2.3]: Let π : $Y \rightarrow T$ be a nonrational ruled surface, $C \subset Y$ an irreducible curve, and m the degree of $\pi: C \rightarrow T$, with $m>1$. Then
$$
C^{2} \leqslant \frac{2 m}{m-1}(g(C)-1)
$$
(2) [2, Corollary 2.4]: Let C and Y be as above. Then either
(a) $C \cong T$ and the embedding of $C \subset Y$ is equivalent to a section of the geometrically ruled surface $\pi: \mathbf{P}(E) \rightarrow T$ and $\left(C^{2}\right)_{Y}=\left(T_{0}^{2}\right)_{\mathbf{P}(E)}$, or
(b) $C^{2} \leqslant 4 g(C)-4$.
IV. Further equations. With the notation as in [3, p. 584], let s be the number of points in X with $r_{p}=1, t$ the number of points in X with $r_{p}=2$ and $\varphi^{-1}(p)=E$, one exceptional divisor, and u the number of points in X with $r_{p}=2$ and $\varphi^{-1}(p)=E_{1} \cup E_{2}$, two exceptional divisors. Assume that for all $p \in X, r_{p} \leqslant 2$. Then
(3) $X^{2}=m(2 n-m e)=C^{2}+s+4 t+5 u$,
(4) $2 g(X)-2=X^{2}-X^{2} / m-2 m\left(p_{a}\left(Y_{0}\right)+1\right)$,
(5) $g(X)=g(C)+t+u$,
(6) $K_{Y_{0}}^{2}=K_{Y}^{2}+r$,
(7) $r=s+t+2 u$.

Proof of Theorem. (i) and (ii) are obvious.
(iii) If $d=3$, then $Y \subset \mathbf{P}^{4}$; by I $g(C)=0, H K=-5$; II implies that Y is ruled, and III implies $p_{a}=0$, and the proof in [3] for $d=3$ applies.
(iv) If $d=4$ and $Y \not \subset \mathbf{P}^{4}$, then, by I, $g(C)=0, H K=-6$; II implies that Y is ruled, and III implies that $p_{a}=0$, and the proof in [3] for $d=4$ applies.
(v) If $d=5$ and $Y \not \subset \mathbf{P}^{4}$, then, by I, $g(C) \leqslant 1$. Suppose $g(C)=0$. Then $K H=$ -7 and Y is a rational surface by II and III, but $[3,(2)]$ leads to a contradiction. Therefore $g(C)=1, K H=-5$, and II implies that Y is ruled. If $p_{a} \neq 0$, then by $\operatorname{III}(2), p_{a}=-1, C$ is a section, $X^{2}=C^{2}$, and Y is geometrically ruled. Hence, $K^{2}=0$, and this contradicts [3, (2)]. Therefore $p_{a}=0$, and the proof in [3] for $d=5, Y \not \subset \mathbf{P}^{4}$ applies.

If $d=5$ and $Y \subset \mathbf{P}^{4}, g(C)=0$ or 2 by [3, Proposition 1.2]. Suppose $g(C)=0$. Then $K H=-7$ and Y is a rational ruled surface by II and III. Finally, by [3, (3) and (2)] we get a contradiction. Hence, $g(C)=2, K H=-3$, and Y is ruled. If $p_{a} \neq 0$, then, by III, $p_{a}=-2, K^{2}=-8$, and this contradicts [3, (2)]. Hence, $g(C)=2, p_{a}=0$, and the proof in [3] for $d=5, Y \subset \mathbf{P}^{4}$ applies.
(vi) If $d=6$ and $Y \not \subset \mathbf{P}^{4}$, then, by I, $g(C) \leqslant 2$. If $g(C)=0$, then $K H=-8$, and II and III imply that Y is a rational ruled surface, and this contradicts [3, (2)]. If $g(C)=1$, then $K H=-6$, and Y is ruled. If $p_{a}=0$, then by [3, Proposition 1.3] $m \leqslant 3$ and $r_{p}=1$, and by [3, (2)] $K^{2}=7$ or 6 . If $K^{2}=7$, then, by (3) and (6), $X^{2}=7$; by $(5), g(X)=g(C)=1$; and by (4), $0=7-7 / m-2 m$, which is
impossible. Hence, $K^{2}=6,(a, b)=(3,3)$, and, by (4), $0=8-8 / m-2 m$, which implies $m=2$. If $p_{a} \neq 0$, then, by II and III, Y is geometrically ruled with $p_{a}=-1, m=1, e=0, n=3$, and $(a, b)=(3,3)$. If $g(C)=2$ with $p_{a} \neq 0$, then, by II and III, Y is geometrically ruled with $p_{a}=-2$, and this contradicts [3, (2)]. Hence, if $g(C)=2$, then Y is a rational ruled surface and the proof in [3] for $d=6$ applies.
(vii) If $d=7$ and $Y \not \subset \mathbf{P}^{4}$, then, by I, $g(C) \leqslant 3$. If $g(C)=0$, then $K H=-9$ and Y is a rational ruled surface, which contradicts [3, (2)]. If $g(C)=1$, then $K H=-7$, and if $p_{a}=0$, then by $[3,(2)],(a, b)=(3,4)$ and Y is geometrically ruled, and, by (4), $2 g(C)-2=0=7-7 / m-2 m$, which is impossible. Hence, if $g(C)=1$, then $p_{a} \neq 0$, and, by III, $p_{a}=-1, K^{2}=0$, and this contradicts [3, (2)].

If $g(C)=2$ and $p_{a}=0$, then by [3, (2)], $K^{2}=6$ or 4, and, by [3, Proposition 1.3], $m \leqslant 3$, whence $r=1$. Hence, by (3) $X^{2}=9$ or 11 and, by (4), $2=9-9 / m-2 m$ or $2=11-11 / m-2 m$, and both are impossible. Hence, if $g(C)=2$, then $p_{a} \neq 0$, and, by II and III, Y is geometrically ruled with $p_{a}=-2, C^{2}=7=2 n-e$, and $T_{0} \cdot C=n-e \geqslant 5$, since T_{0} is a nonsingular curve of genus 2 ; but this contradicts the fact that $e \geqslant p_{a}=-2$.

Hence, if $d=7$, then $g(C)=3$ and $K H=-3$. If $p_{a} \neq 0$, then, by III, $m \leqslant 2$. If $m=1$, then $r_{p}=1, g(X)=g(C)$, and, by (4), $p_{a}=-3$. Hence, by [3, (2)], Y is of type $(2,5)$ and is geometrically ruled with $e=-1, n=3$, or of type $(3,4)$ with $K^{2}=-18$. If $m=2$, by (3)-(5), we get $9+8 p_{a}=s+u \geqslant 0$. Therefore $p_{a}=-1$ and, by [3, (2)], $K^{2}=-4$ or -6 . If $p_{a}=0$, then the proof in [3] for $d=7$ applies.
(viii) If $d=8$ and $Y \not \subset \mathbf{P}^{4}$, then, by I, $g(C) \leqslant 5$. Suppose $g(C)=0$. Then $p_{a}=0$ and $[3,(2)]$ leads us to a contradiction. If $g(C)=1$, then by $[3,(2)], p_{a}<0$, and, by III, $p_{a}=-1$; hence $K^{2} \leqslant 0$, and this contradicts [3, (2)]. If $g(C)=2$ with $p_{a}=0$, then, by [3, (2)], $K^{2}=6$ or 7, and by [3, Proposition 1.3], $m<4$; hence, $r_{p}=1$, and, by (4), $2=10-10 / m-2 m$ or $2=9-9 / m-2 m$, and both are impossible. Hence, if $g(C)=2$, then $p_{a}<0$, and, by III, C is a section, Y is geometrically ruled with $p_{a}=-2$, and $K^{2}=-8$; but this is impossible by [3, (2)]. Therefore if $d=8$ and $Y \not \subset \mathbf{P}^{4}$, then $3 \leqslant g(C) \leqslant 5$.

If $g(C)=3$ with $p_{a}=0$, then, by [3, Proposition 1.3], $m \leqslant 4$. If $m<4$, then $r_{p}=1$, and by (5), $g(X)=3$, and, by (4), $4=8+r-(8+r) / m-2 m$; but, by [3, (2)], $K^{2}=6,3$, or 2 , which are impossible. If $m=4$, then $r_{p} \leqslant 2$, and, by (3)-(5), $3 s+4 t+7 u=24$, and, by (7), $r=6$ or 7 are the only solutions. Hence, by [3, (2)], $r=6, K^{2}=2$, and $(a, b)=(4,4)$. If $g(C)=3$ with $p_{a}<0$ and Y is geometrically ruled, then, by $[3,(2)], p_{a}=-1$ and $(a, b)=(2,6)$ or $p_{a}=-3$ and $(a, b)=(4,4)$. Since Y is assumed geometrically ruled, we get from (3) and (4) that $p_{a}=-1$ implies $4=8-8 / m$; hence, $m=2, e=-1, n=1$, and $p_{a}=-3$ imply $4=8-$ $8 / m+4 m$; hence, $m=1, e=0, n=4$. If $g(C)=3$ with $p_{a}<0$ and Y not geometrically ruled, then, by III, $m=2$ and, by (3)-(5), $8+8 p_{a}=s+u \geqslant 0$. Hence, $p_{a}=-1$ and Y is either of type $(3,5)$ with $K^{2}=-3$, or of type $(4,4)$ with $K^{2}=-4$. If $g(C)>3$, then the proof in [3] for $d=8$ applies.

References

1. A. Beauville, Surfaces algébriques complexes, Astérisque 54 (1978).
2. R. Hartshorne, Curves with high self-intersection on algebraic surfaces, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 111-125.
3. A. Papantonopoulou, Embeddings in G(1,3), Proc. Amer. Math. Soc. 89 (1983), 583-586.

Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
Current address: 13 South Stanworth Drive, Princeton, New Jersey 08540

[^0]: Received by the editors January 8, 1985 and, in revised form, February 19, 1985.
 1980 Mathematics Subject Classification. Primary 14M15; Secondary 14J99, 14E25.

