NUMERICAL RADIUS-ATTAINING OPERATORS ON $C(K)$

CARMEN SILVIA CARDASSI ${ }^{1}$

Abstract

Using a construction due to Johnson and Wolfe, we show that the numerical radius-attaining operators from $C(K)$ into itself are dense in the space of all operators, where K is a compact Hausdorff space.

Let X be a Banach space, $L(X)$ the Banach space of bounded linear operators from X into X, and $\operatorname{NRA}(X)$ the subset of $L(X)$ consisting of the numerical radius-attaining operators.

Berg and Sims [1] have proved the "Bishop-Phelps type" result that $\operatorname{NRA}(X)$ is dense in $L(X)$ when X is uniformly convex. Elsewhere we have shown the same to be so for X being $c_{0}, l_{1}, L_{1}(\mu)$ or a uniformly smooth space.

In this note we consider the case of $X=C(K)$, the space of continuous real-valued functions on the compact Hausdorff space K. Following the lead of Johnson and Wolfe [3], we again show that NRA $(C(K))$ is dense in $L(C(K)$).

We still do not know of any X for which $\operatorname{NRA}(X)$ is not dense in $L(X)$. It may be that Lindenstrauss's example, using a renorming of c_{0}, for which the norm-attaining operators are not dense in $L(X)$ [4] also serves in the present setup, but we have not yet found that to be so.

We introduce initially some definitions and notations.
We define the numerical radius of a bounded linear operator $T: X \rightarrow X$, denoted by $v(T)$, by

$$
v(T)=\sup \left\{\left|x^{*}(T x)\right|:\left(x, x^{*}\right) \in \Pi(X)\right\},
$$

where $\Pi(X)=\left\{\left(x, x^{*}\right) \in X \times X^{*}:\left\|x^{*}\right\|=\|x\|=x^{*}(x)=1\right\}$.
We say that T attains its numerical radius if there is $\left(x_{0}, x_{0}^{*}\right) \in \Pi(X)$ such that $v(T)=\left|x_{0}^{*}\left(T x_{0}\right)\right|$, and we denote the set of numerical radius-attaining operators by NRA (X).

If K is a compact Hausdorff space and X is a Banach space, we denote by $C_{w^{*}}\left(K, X^{*}\right)$ the Banach space of continuous functions $F: K \rightarrow X^{*}$, where X^{*} is equipped with its w^{*}-topology, with the norm $\|F\|=\sup \{\|F(t)\|: t \in K\}$.

It is a well-known result that $C_{\mathrm{w}}\left(K, X^{*}\right)$ can be identified, isomorphically and isometrically, with the space $L(X, C(K))$ of all bounded linear operators from X into $C(K)$, the identification being given by

$$
(T x)(t)=F(t)(x), \quad \forall t \in K, \forall x \in X,
$$

where $T \in L(X, C(K))$ [2, p. 490].
Received by the editors August 16, 1984.
1980 Mathematics Subject Classification. Primary 47B99, 46E15.
${ }^{1}$ This work was partially supported by FAPESP (Săo Paulo, Brasil) and was done during a visit to Kent State University (Kent, Ohio).
$M(K)$ denotes the space of regular Borel measures on K, with the norm of the variation, and is identified with $C(K)^{*}$.

In our case we will use the identification of $L(C(K))$ with $C_{\mathrm{w}^{*}}(K, M(K))$.
For the proof of the result announced in the abstract we need several lemmas.
Lemma 1. Given $F \in C_{\mathrm{w}^{*}}(K, M(K)), \varepsilon>0, f \in C(K), t_{0} \in K$ and an open set $V \subset K$, there is U, an open neighborhood of t_{0}, such that
(i) $|F(t)|(V) \geqslant\left|F\left(t_{0}\right)\right|(V)-\varepsilon, \forall t \in U$;
(ii) $F(t)(f) \geqslant F\left(t_{0}\right)(f)-\varepsilon, \forall t \in U$.

Proof. First we show that the function $\nu \in M(K) \mapsto|\nu|(V) \in \mathbf{R}$ is lower semicontinuous, where $M(K)$ has its w^{*}-topology.

In fact, if $\nu_{0} \in M(K)$, by Hahn decomposition and regularity of ν_{0} we can choose disjoint compact sets K^{+}and K^{-}, contained in V, such that $\left|\nu_{0}\right|\left(K^{+}\right)=\nu_{0}\left(K^{+}\right)$, $\left|\nu_{0}\right|\left(K^{-}\right)=-\nu_{0}\left(K^{-}\right)$and $\left|\nu_{0}\right|\left(V \backslash K^{+} \cup K^{-}\right)<\varepsilon / 3$.

Since K is compact Hausdorff, we can choose $f_{0} \in C(K)$ with $\left|f_{0}(t)\right| \leqslant 1$, $\forall t \in K,\left.f_{0}\right|_{K^{+}}=1,\left.f_{0}\right|_{K^{-}}=-1$ and $\left.f_{0}\right|_{K \backslash V}=0$.

Let $A=\left\{\nu \in M(K):\left|\nu\left(f_{0}\right)-\nu_{0}\left(f_{0}\right)\right|<\varepsilon / 3\right\}$. Then A is a w*-neighborhood of ν_{0}, and if $\nu \in A$ we have

$$
\begin{aligned}
|\nu|(V) & \geqslant \int_{V} f_{0} d|\nu| \geqslant\left|\int_{V} f_{0} d \nu\right|=\left|\nu\left(f_{0}\right)\right|>\left|\nu_{0}\left(f_{0}\right)\right|-\frac{\varepsilon}{3} \\
& =\left|\int_{V} f_{0} d \nu_{0}\right|-\frac{\varepsilon}{3} \geqslant \int_{V} f_{0} d \nu_{0}-\frac{\varepsilon}{3} \\
& =\int_{K^{+}} d \nu_{0}-\int_{K^{-}} d \nu_{0}+\int_{V \backslash K^{+} \cup K^{-}} f_{0} d \nu_{0}-\frac{\varepsilon}{3} \\
& >\nu_{0}\left(K^{+}\right)-\nu_{0}\left(K^{-}\right)-\frac{\varepsilon}{3}-\frac{\varepsilon}{3}>\left|\nu_{0}\right|(V)-\frac{\varepsilon}{3}-\frac{\varepsilon}{3}-\frac{\varepsilon}{3}=\left|\nu_{0}\right|(V)-\varepsilon
\end{aligned}
$$

Since $F \in C_{\mathrm{w}^{*}}(K, M(K)$), the composite function $t \in K \mapsto|F(t)|(V)$ is also lower semicontinuous. Thus there is an open neighborhood U_{1} of t_{0} such that for $t \in U_{1}$ we have $|F(t)|(V)>\left|F\left(t_{0}\right)\right|(V)-\varepsilon$.

Also, given $B=\left\{\nu \in M(K):\left|\nu(f)-F\left(t_{0}\right)(f)\right|<\varepsilon\right\}$, which is a w^{*}-neighborhood of $F\left(t_{0}\right) \in M(K)$, there is U_{2}, an open neighborhood of t_{0} such that for $t \in U_{2}$ we have $F(t) \in B$, since $F \in C_{\mathrm{w}^{*}}(K, M(K))$. Then if $t \in U_{2}$ we have $F(t)(f) \geqslant$ $F\left(t_{0}\right)(f)-\varepsilon$.

Letting $U=U_{1} \cap U_{2}$ we have that U is an open neighborhood of t_{0} and, for $t \in U$, (i) and (ii) hold.

Lemma 2. Given $F \in C_{\mathrm{w}^{*}}(K, M(K))$ and $\varepsilon>0$, there are $f_{0} \in C(K),\left\|f_{0}\right\|_{\infty}=1$ and $t_{0} \in K$ such that $F\left(t_{0}\right)\left(f_{0}\right)>\|F\|-\varepsilon$ and $\left|f_{0}\left(t_{0}\right)\right|=1$.

Proof. Let $t_{0} \in K$ be such that $\left|F\left(t_{0}\right)\right|(K)>\|F\|-\varepsilon / 3$.
For simplicity let us set $\mu_{0}=F\left(t_{0}\right)$. Then $\left|\mu_{0}\right|(K)>\|F\|-\varepsilon / 3$.
Using Hahn decomposition and regularity of μ_{0}, we can choose disjoint compact sets K^{+}and K^{-}such that $\left|\mu_{0}\right|\left(K^{+}\right)=\mu_{0}\left(K^{+}\right),\left|\mu_{0}\right|\left(K^{-}\right)=-\mu\left(K^{-}\right)$and

$$
\left|\mu_{0}\right|\left(K \backslash K^{+} \cup K^{-}\right)<\varepsilon / 3
$$

Then $\mu_{0}\left(K^{+}\right)-\mu_{0}\left(K^{-}\right)>\left|\mu_{0}\right|(K)-\varepsilon / 3$.

Case I. $t_{0} \in K^{+} \cup K^{-}$.
Since K is compact Hausdorff, we can choose $f_{0} \in C(K),\left|f_{0}(t)\right| \leqslant 1, \forall t \in K$, $\left.f_{0}\right|_{K^{+}}=1$, and $\left.f_{0}\right|_{K^{-}}=-1$.

Then

$$
\begin{aligned}
F\left(t_{0}\right)\left(f_{0}\right) & =\int_{K} f_{0} d \mu_{0}=\int_{K^{+}} d \mu_{0}-\int_{K^{-}} d \mu_{0}+\int_{K \backslash K^{+} \cup K^{-}} f_{0} d \mu_{0} \\
& =\mu_{0}\left(K^{+}\right)-\mu_{0}\left(K^{-}\right)+\int_{K \backslash K^{+} \cup K^{-}} f_{0} d \mu_{0} .
\end{aligned}
$$

Since

$$
\left|\int_{K \backslash K^{+} \cup K^{-}} f_{0} d \mu_{0}\right| \leqslant\left|\mu_{0}\right|\left(K \backslash K^{+} \cup K^{-}\right)<\varepsilon / 3,
$$

we get

$$
\begin{aligned}
F\left(t_{0}\right)\left(f_{0}\right) & >\mu_{0}\left(K^{+}\right)-\mu_{0}\left(K^{-}\right)-\varepsilon / 3>\left|\mu_{0}\right|(K)-\varepsilon / 3-\varepsilon / 3 \\
& >\|F\|-\varepsilon / 3-\varepsilon / 3-\varepsilon / 3=\|F\|-\varepsilon .
\end{aligned}
$$

Obviously in this case we have $\left|f_{0}\left(t_{0}\right)\right|=1$, since $t_{0} \in K^{+} \cup K^{-}$and $\left.\left|f_{0}\right|\right|_{K^{+} \cup K^{-}}=1$. Case II. $t_{0} \notin K^{+} \cup K^{-}$.
Since $K^{+} \cup\left\{t_{0}\right\}$ and K^{-}are again disjoint compact sets, let $f_{0} \in C(K)$ be such that $\left|f_{0}(t)\right| \leqslant 1, \forall t \in K,\left.f_{0}\right|_{K^{+} \cup\left\{t_{0}\right\}}=1$ and $\left.f_{0}\right|_{K^{-}}=-1$.

As in Case I we have $F\left(t_{0}\right)\left(f_{0}\right)>\|F\|-\varepsilon$ and $f_{0}\left(t_{0}\right)=1$, by definition of f_{0}.
As an easy consequence we have
Corollary 3. $v(T)=\|T\|, \forall T \in C(K)$.
The next lemma is a modification of a result of Johnson and Wolfe [3].
Lemma 4. Given $F \in C_{\mathrm{w}^{*}}(K, M(K))$ and $\varepsilon>0$, there are open subsets V_{1} and V_{2} of K, with $\bar{V}_{1} \cap \bar{V}_{2}=\varnothing, V_{2} \neq \varnothing$, and there are $f_{1} \in C(K),\left\|f_{1}\right\|_{\infty}=1$, and $F_{1} \in$ $C_{w^{*}}(K, M(K))$ such that
(i) $\left|f_{1}(t)\right|=1, \forall t \in K \backslash V_{1}$;
(ii) $\left|F_{1}(t)\right|\left(V_{1}\right)=0, \forall t \in V_{2}$;
(iii) $F_{1}(t)\left(f_{1}\right)>\left\|F_{1}\right\|-\varepsilon, \forall t \in V_{2}$;
(iv) $\left\|F-F_{1}\right\|<\varepsilon$.

Proof. Let $t_{0} \in K$ be such that $\left|F\left(t_{0}\right)\right|(K)>\|F\|-\varepsilon / 4$.
Using (B^{+}, B^{-}) a Hahn decomposition of K for $\mu_{0}=F\left(t_{0}\right)$ and the regularity of μ_{0}, choose $K^{+} \subset B^{+}$and $K^{-} \subset B^{-}$compact sets such that

$$
\mu_{0}\left(K^{+}\right)-\mu_{0}\left(K^{-}\right)>\left|\mu_{0}\right|(K)-\varepsilon / 4>\|F\|-\varepsilon / 2 .
$$

As in the proof of Lemma 2, let $f_{0} \in C(K),\left\|f_{0}\right\|_{\infty}=1$, be such that $\left.f_{0}\right|_{K^{+}}=1$, $\left.f_{0}\right|_{K^{-}}=-1$ and $\left.\left|f_{0}\right|\right|_{K^{+} \cup K^{-} \cup\left\{t_{0}\right\}}=1$.

For each $\alpha \in] 0,1\left[\right.$, let $A_{\alpha}=\left\{t \in K:\left|f_{0}(t)\right|<\alpha\right\}$.
Case I. $\left.A_{\alpha}=\varnothing, \forall \alpha \in\right] 0,1[$.
In this case, $\left|f_{0}(t)\right|=1, \forall t \in K$. Define $f_{1}=f_{0}, V_{1}=\varnothing$ and $F_{1}=F$. Then (i) and (ii) hold for $t \in K$ and (iv) also is satisfied.

Moreover,

$$
F_{1}\left(t_{0}\right)\left(f_{1}\right)=F\left(t_{0}\right)\left(f_{0}\right) \geqslant \mu_{0}\left(K^{+}\right)-\mu_{0}\left(K^{-}\right)-\varepsilon / 4>\|F\|-3 \varepsilon / 4
$$

By Lemma 1 , using $\varepsilon / 4$, there is $V_{2} \subset K$, an open neighborhood of t_{0}, such that $F_{1}(t)\left(f_{1}\right) \geqslant F_{1}\left(t_{0}\right)\left(f_{1}\right)-\varepsilon / 4, \forall t \in V_{2}$.

Then $F_{1}(t)\left(f_{1}\right) \geqslant\|F\|-\varepsilon=\left\|F_{1}\right\|-\varepsilon, \forall t \in V_{2}$ and (iii) holds.
Obviously, $V_{2} \neq \varnothing$ and $\bar{V}_{1} \cap \bar{V}_{2}=\varnothing$, and we are done.
Case II. There is $\left.\alpha_{0} \in\right] 0,1\left[\right.$ with $A_{\alpha_{0}} \neq \varnothing$.
In this case let β_{0} be such that $\alpha_{0}<\beta_{0}<1$.
Define $V_{1}=\left\{t \in V:\left|f_{0}(t)\right|<\alpha_{0}\right\}=A_{\alpha_{0}}$ and $W=\left\{t \in K:\left|f_{0}(t)\right|>\beta_{0}\right\}$. Then V_{1} and W are open sets, $\bar{V}_{1} \cap W=\varnothing$ and $\left\{t_{0}\right\} \cup K^{+} \cup K^{-} \subset W$.

Since $A_{\alpha_{0}} \neq \varnothing$, fix $t_{1} \in V_{1}$ and choose $f_{1}, g \in C(K),\left|f_{1}(t)\right| \leqslant 1,0 \leqslant g(t) \leqslant 1$, $\forall t \in K$, such that

$$
f_{1}(t)=\left\{\begin{array}{ll}
1 & \text { if } t \in \overline{\left(K \backslash V_{1}\right) \cap B^{+}}, \\
-1 & \text { if } t \in \overline{\left(K \backslash V_{1}\right) \cap B^{-}}, \\
0 & \text { if } t=t_{1}
\end{array} \quad \text { and } \quad g(t)= \begin{cases}0 & \text { if } t \in \bar{W} \\
1 & \text { if } t \in \bar{V}_{1}\end{cases}\right.
$$

Then (i) holds and since

$$
\left[(1-g) f_{1}\right](t)=1 \quad \text { if } t \in K^{+}, \quad\left[(1-g) f_{1}\right](t)=-1 \quad \text { if } t \in K^{-}
$$

and

$$
\left|\left[(1-g) f_{1}\right](t)\right| \leqslant 1 \quad \text { if } t \in\left(B^{+} \backslash K^{+}\right) \cup\left(B^{-} \backslash K^{-}\right)
$$

we have

$$
\begin{aligned}
F\left(t_{0}\right)\left((1-g) f_{1}\right)= & \int_{K}(1-g) f_{1} d \mu_{0} \\
= & \int_{K^{+}}(1-g) f_{1} d \mu_{0}+\int_{K^{-}}(1-g) f_{1} d \mu_{0} \\
& +\int_{\left(B^{+} \backslash K^{+}\right) \cup\left(B^{-} \backslash K^{-}\right)}(1-g) f_{1} d \mu_{0} \\
\geqslant & \mu_{0}\left(K^{+}\right)-\mu_{0}\left(K^{-}\right)-\left|\mu_{0}\right|\left(\left(B^{+} \backslash K^{+}\right) \cup\left(B^{-} \backslash K^{-}\right)\right) \\
\geqslant & \left|\mu_{0}\right|(K)-\varepsilon / 4-\varepsilon / 4>\|F\|-3 \varepsilon / 4 .
\end{aligned}
$$

By Lemma 1, using $\varepsilon / 4$, there is $U \subset K$ an open neighborhood of t_{0} such that for each $t \in U$,

$$
F(t)\left((1-g) f_{1}\right) \geqslant F\left(t_{0}\right)\left((1-g) f_{1}\right)-\varepsilon / 4>\|F\|-\varepsilon
$$

and

$$
|F(t)|(W) \geqslant\left|F\left(t_{0}\right)\right|(W)-\varepsilon / 4>\|F\|-\varepsilon .
$$

We can take $U \cap \bar{V}_{1}=\varnothing$, since $t_{0} \notin \bar{V}_{1}$. Let $V_{2} \subset U$ be an open set such that $t_{0} \in V_{2}$ and $\bar{V}_{2} \subset U$. In particular, $V_{2} \neq \varnothing$ and $\bar{V}_{1} \cap \bar{V}_{2}=\varnothing$.

Choose $h \in C(K),\|h\|_{\infty}=1, h(t)=1$ if $t \in \bar{V}_{2}$ and $h(t)=0$ if $t \in K \backslash U$ and define $F_{1}: K \rightarrow M(K)$ by $F_{1}(t)=[1-h(t) g] F(t), \forall t \in K$, which means

$$
F_{1}(t)(p)=F(t)([1-h(t) g] p), \quad \forall p \in C(K)
$$

Since $g \in C(K), \quad F_{1}(t) \in M(K), \forall t \in K$ and since $h \in C(K)$ and $F \in C_{\mathrm{w}^{*}}(K, M(K)), \quad F_{1} \in C_{\mathrm{w}^{*}}(K, M(K))$. Also $\left|F_{1}(t)\right|(K) \leqslant|F(t)|(K)$, since $\|1-h(t) g\|_{\infty} \leqslant 1, \forall t \in K$, and then $\left\|F_{1}\right\| \leqslant\|F\|$.

If $t \in V_{2}, h(t)=1$ and $F_{1}(t)=(1-g) F(t)$. Since $\left.g\right|_{\bar{V}_{1}}=1,\left|F_{1}(t)\right|\left(V_{1}\right)=0$ and (ii) holds. Also

$$
F_{1}(t)\left(f_{1}\right)=F(t)\left((1-g) f_{1}\right)>\|F\|-\varepsilon \geqslant\left\|F_{1}\right\|-\varepsilon
$$

and (iii) holds. For (iv), note that

$$
\left|F(t)-F_{1}(t)\right|(K)=|h(t) g F(t)|(K)=0 \quad \text { if } t \in K \backslash U
$$

since $\left.h\right|_{K \backslash U}=0$ and

$$
\left|F(t)-F_{1}(t)\right|(K) \leqslant|g F(t)|(K) \quad \text { if } t \in U
$$

But $\left.g\right|_{\bar{W}}=0$ and then

$$
\begin{aligned}
|g F(t)|(K) & =|g F(t)|(K \backslash \bar{W}) \leqslant|F(t)|(K \backslash \bar{W}) \\
& =|F(t)|(K)-|F(t)|(\bar{W}) \leqslant\|F\|-|F(t)|(W) \\
& <\|F\|-(\|F\|-\varepsilon)=\varepsilon \quad \text { if } t \in U .
\end{aligned}
$$

Then

$$
\left\|F-F_{1}\right\|=\sup \left\{\left|F(t)-F_{1}(t)\right|(K): t \in K\right\} \leqslant \varepsilon
$$

The proof of the next lemma can be found in [3, Lemma 2.4].
Lemma 5. Let $F \in C_{\mathrm{w}^{*}}(K, M(K)), V_{1}, V_{2} \subset K$ open sets, $t_{0} \in V_{2}, f_{0} \in C(K)$, $\left\|f_{0}\right\|_{\infty}=1$, be such that
(a) $|F(t)|\left(V_{1}\right)=0, \forall t \in V_{2}$;
(b) $F\left(t_{0}\right)\left(f_{0}\right) \geqslant\|F\|-\varepsilon$;
(c) $\left|f_{0}(t)\right|=1, \forall t \in K \backslash V_{1}$.

Then for every $r>2 / 3$, there is $F_{1} \in C_{w^{*}}(K, M(K))$, and there is $t_{1} \in V_{2}$ such that
(i) $\left|F_{1}(t)\right|\left(V_{1}\right)=0, \forall t \in V_{2}$;
(ii) $F_{1}\left(t_{1}\right)\left(f_{0}\right) \geqslant\left\|F_{1}\right\|-r \varepsilon$;
(iii) $\left\|F-F_{1}\right\|<r \varepsilon$.

Theorem 6. $\overline{\operatorname{NRA}(C(K))}=L(C(K))$.
Proof. Let $T \in L(C(K))$ and $\varepsilon>0$ be given, and let $F \in C_{\mathrm{w}^{*}}(K, M(K))$ be the representative of T.

Take $2 / 3<r<1$ and apply Lemma 4 to get $F_{0} \in C_{w^{*}}(K, M(K)), V_{1}, V_{2} \subset K$ open sets, $\bar{V}_{1} \cap \bar{V}_{2}=\varnothing, V_{2} \neq \varnothing, f_{0} \in C(K),\left\|f_{0}\right\|_{\infty}=1$, such that
(a) $\left|F_{0}(t)\right|\left(V_{1}\right)=0, \forall t \in V_{2}$;
(b) $F_{0}(t)\left(f_{0}\right)>\left\|F_{0}\right\|-\varepsilon(1-r), \forall t \in V_{2}$;
(c) $\left|f_{0}(t)\right|=1, \forall t \in K \backslash V_{1}$;
(d) $\left\|F-F_{0}\right\|<\varepsilon(1-r)$.

Choose $t_{0} \in V_{2}$ such that
(b') $F_{0}\left(t_{0}\right)\left(f_{0}\right)>\left\|F_{0}\right\|-\varepsilon(1-r)$, and let $\lambda=\left\|F_{0}\right\|-F_{0}\left(t_{0}\right)\left(f_{0}\right)$. Then $0 \leqslant \lambda<$ $\varepsilon(1-r)$.

Case I. $\lambda=0$.
In this case, $\left\|F_{0}\right\|=F_{0}\left(t_{0}\right)\left(f_{0}\right)=\delta_{t_{0}}\left(T_{0} f_{0}\right)$, where $T_{0} \in L(C(K))$ corresponds to F_{0}.

Defining $\mu_{0}=\left(\operatorname{sgn} f_{0}\left(t_{0}\right)\right) \delta_{t_{0}}$, we have $\mu_{0}\left(f_{0}\right)=\left|f_{0}\left(t_{0}\right)\right|=1$, since $t_{0} \in V_{2}$ and $V_{1} \cap V_{2}=\varnothing$, and $\left|\mu_{0}\right|(K)=1$. Then $\left(f_{0}, \mu_{0}\right) \in \Pi(C(K))$.

Also we have $T_{0} \in \operatorname{NRA}(C(K))$, for

$$
\left|\mu_{0}\left(T_{0} f_{0}\right)\right|=\left|\delta_{t_{0}}\left(T_{0} f_{0}\right)\right|=\left\|F_{0}\right\|=\left\|T_{0}\right\| .
$$

From (d), $\left\|T-T_{0}\right\|=\left\|F-F_{0}\right\|<\varepsilon(1-r)<\varepsilon$, and we are done.
Case II. $\lambda>0$.
By definition of λ,
($\left.\mathrm{b}^{\prime \prime}\right) F_{0}\left(t_{0}\right)\left(f_{0}\right)=\left\|F_{0}\right\|-\lambda$.
Now (a), ($\mathrm{b}^{\prime \prime}$) and (c) allow us to apply Lemma 5 and get $F_{1} \in C_{\mathrm{w}^{*}}(K, M(K))$ and $t_{1} \in V_{2}$ such that
$\left(\mathrm{a}_{1}\right)\left|F_{1}(t)\right|\left(V_{1}\right)=0, \forall t \in V_{2} ;$
$\left(\mathrm{b}_{1}\right) F_{1}\left(t_{1}\right)\left(f_{0}\right) \geqslant\left\|F_{1}\right\|-r \lambda$;
$\left(\mathrm{d}_{1}\right)\left\|F_{0}-F_{1}\right\|<r \lambda$.
Again $\left(\mathrm{a}_{1}\right),\left(\mathrm{b}_{1}\right)$ and (c) allow us to apply Lemma 5 and get $F_{2} \in C_{\mathrm{w} *}(K, M(K))$ and $t_{2} \in V_{2}$ such that
$\left(\mathrm{a}_{2}\right)\left|F_{2}(t)\right|\left(V_{1}\right)=0, \forall t \in V_{2}$;
$\left(\mathrm{b}_{2}\right) F_{2}\left(t_{2}\right)\left(f_{0}\right) \geqslant\left\|F_{2}\right\|-r^{2} \lambda$;
$\left(\mathrm{d}_{2}\right)\left\|F_{1}-F_{2}\right\|<r^{2} \lambda$.
Following in this way we get sequences $\left\{F_{n}\right\}$ in $C_{w^{*}}(K, M(K))$ and $\left\{t_{n}\right\}$ in V_{2} such that for each $n \in \mathbf{N}$,
$\left(\mathrm{b}_{n}\right) F_{n}\left(t_{n}\right)\left(f_{0}\right) \geqslant\left\|F_{n}\right\|-r^{n} \lambda$;
$\left(\mathrm{d}_{n}\right)\left\|F_{n-1}-F_{n}\right\| \leqslant r^{n} \lambda$.
Since K is compact, $\left\{t_{n}\right\}$ has a subsequence convergent to some $\tilde{t} \in K$. But $t_{n} \in V_{2}, \forall n \in \mathbf{N}$ and then $\tilde{t} \in \bar{V}_{2}$. We still denote this subsequence by $\left\{t_{n}\right\}$.

On the other hand, if $m>n \geqslant 1$, by $\left(\mathrm{d}_{n}\right)$ it follows that

$$
\left\|F_{n}-F_{m}\right\| \leqslant \sum_{k=n+1}^{m}\left\|F_{k}-F_{k-1}\right\| \leqslant\left(\sum_{k=n+1}^{m} r^{k}\right) \lambda .
$$

Since $r<1$, this shows that $\left\{F_{n}\right\}$ is Cauchy in $C_{w^{*}}(K, M(K))$ and so is $\left\{T_{n}\right\}$ in $L(C(K))$, where T_{n} corresponds to $F_{n}, \forall n \in \mathbf{N}$.

Let $\tilde{T} \in L(C(K))$ be the limit of $\left\{T_{n}\right\}$ and \tilde{F} its correspondent in $C_{w^{*}}(K, M(K))$. We have

$$
\begin{aligned}
\left\|T-T_{n}\right\| & \leqslant\left\|T-T_{0}\right\|+\left\|T_{0}-T_{n}\right\| \leqslant \varepsilon(1-r)+\left(\sum_{k=1}^{n} r^{k}\right) \lambda \\
& \leqslant \varepsilon(1-r)+\frac{r}{1-r} \varepsilon(1-r)=\varepsilon, \quad \forall n \in \mathbf{N} .
\end{aligned}
$$

From this it follows that $\|T-\tilde{T}\| \leqslant \varepsilon$.
It remains to show that $\tilde{T} \in \operatorname{NRA}(C(K))$.

From $\left|\tilde{F}\left(t_{n}\right)\left(f_{0}\right)-F_{n}\left(t_{n}\right)\left(f_{0}\right)\right| \leqslant\left\|\tilde{F}-F_{n}\right\|$ and $\left(\mathrm{b}_{n}\right)$ we get

$$
\begin{aligned}
\tilde{F}\left(t_{n}\right)\left(f_{0}\right) & \geqslant F_{n}\left(t_{n}\right)\left(f_{0}\right)-\left\|\tilde{F}-F_{n}\right\| \geqslant\left\|F_{n}\right\|-r^{n} \lambda-\left\|\tilde{F}-F_{n}\right\| \\
& \geqslant\|\tilde{F}\|-r^{n} \lambda-2\left\|\tilde{F}-F_{n}\right\|, \quad \forall n \in \mathbf{N},
\end{aligned}
$$

and since

$$
\left\|\tilde{F}-F_{n}\right\| \leqslant\left(\sum_{k=n+1}^{\infty} r^{k}\right) \lambda=\frac{r^{n+1}}{1-r} \lambda<r^{n+1}, \quad \forall n \in \mathbf{N},
$$

we have

$$
\tilde{F}\left(t_{n}\right)\left(f_{0}\right) \geqslant\|\tilde{F}\|-r^{n} \varepsilon(1-r)-2 r^{n+1} \varepsilon=\|\tilde{F}\|-r^{n} \varepsilon(3-r) .
$$

Now, since \tilde{F} is w^{*}-continuous and $t_{n} \rightarrow \tilde{t}$ and $r^{n} \rightarrow 0$, we have

$$
\tilde{F}(\tilde{t})\left(f_{0}\right) \geqslant\|\tilde{F}\| \quad \text { or } \quad \delta_{i}\left(\tilde{T} f_{0}\right) \geqslant\|\tilde{T}\|
$$

Also $\left|f_{0}(\tilde{t})\right|=\lim _{n \rightarrow \infty}\left|f_{0}\left(t_{n}\right)\right|=1$, since f_{0} is continuous, $t_{n} \rightarrow \tilde{t}$ and $\left|f_{0}\left(t_{n}\right)\right|=1$, because $t_{n} \in V_{2}$ and $\bar{V}_{2} \cap \bar{V}_{1}=\varnothing$.

Defining $\tilde{\mu}=\left(\operatorname{sgn} f_{0}(\tilde{t})\right) \delta_{\tilde{i}}$, we have $\tilde{\mu} \in M(K),|\tilde{\mu}|(K)=1$, and $\tilde{\mu}\left(f_{0}\right)=\left|f_{0}(\tilde{t})\right|=$ 1. Then $\left(f_{0}, \tilde{\mu}\right) \in \Pi(C(K))$.

Since $\left|\tilde{\mu}\left(\tilde{T} f_{0}\right)\right|=\left|\delta_{i}\left(\tilde{T} f_{0}\right)\right| \geqslant\|\tilde{T}\|$ and $\|\tilde{T}\|=v(\tilde{T})$, by Corollary 3, we get $\left|\tilde{\mu}\left(\tilde{T} f_{0}\right)\right|$ $\geqslant v(\tilde{T})$. But $v(\tilde{T}) \geqslant\left|\tilde{\mu}\left(\tilde{T} f_{0}\right)\right|$, and then $v(\tilde{T})=\left|\tilde{\mu}\left(\tilde{T} f_{0}\right)\right|$ and $\tilde{T} \in \operatorname{NRA}(C(K))$.

Acknowledgement. We are grateful to Professor Joseph Diestel for introducing us to the subject of this work and for his help during the preparation of this paper.

References

1. I. D. Berg and B. Sims, Denseness of numerical radius attaining operators, J. Austral. Math. Soc. Ser. A 36 (1984), 130-133.
2. N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.
3. J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. 65 (1979), 7-19.
4. J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148.

Instituto de Matemática e Estatística, Universidade de São Paulo, C. P. 20.570 (Ag. Iguatemi), 01498-Săo Paulo, SP-Brasil

