NUMERICAL RADIUS-ATTAINING OPERATORS ON C(K)

CARMEN SILVIA CARDASSI¹

ABSTRACT. Using a construction due to Johnson and Wolfe, we show that the numerical radius-attaining operators from C(K) into itself are dense in the space of all operators, where K is a compact Hausdorff space.

Let X be a Banach space, L(X) the Banach space of bounded linear operators from X into X, and NRA(X) the subset of L(X) consisting of the numerical radius-attaining operators.

Berg and Sims [1] have proved the "Bishop-Phelps type" result that NRA(X) is dense in L(X) when X is uniformly convex. Elsewhere we have shown the same to be so for X being c_0 , l_1 , $L_1(\mu)$ or a uniformly smooth space.

In this note we consider the case of X = C(K), the space of continuous real-valued functions on the compact Hausdorff space K. Following the lead of Johnson and Wolfe [3], we again show that NRA(C(K)) is dense in L(C(K)).

We still do not know of any X for which NRA(X) is not dense in L(X). It may be that Lindenstrauss's example, using a renorming of c_0 , for which the norm-attaining operators are not dense in L(X) [4] also serves in the present setup, but we have not yet found that to be so.

We introduce initially some definitions and notations.

We define the numerical radius of a bounded linear operator $T: X \to X$, denoted by v(T), by

$$v(T) = \sup\{|x^*(Tx)|: (x, x^*) \in \Pi(X)\},$$
 where $\Pi(X) = \{(x, x^*) \in X \times X^*: ||x^*|| = ||x|| = x^*(x) = 1\}.$

We say that T attains its numerical radius if there is $(x_0, x_0^*) \in \Pi(X)$ such that $v(T) = |x_0^*(Tx_0)|$, and we denote the set of numerical radius-attaining operators by NRA(X).

If K is a compact Hausdorff space and X is a Banach space, we denote by $C_{w^*}(K, X^*)$ the Banach space of continuous functions $F: K \to X^*$, where X^* is equipped with its w^* -topology, with the norm $||F|| = \sup\{||F(t)||: t \in K\}$.

It is a well-known result that $C_{w^*}(K, X^*)$ can be identified, isomorphically and isometrically, with the space L(X, C(K)) of all bounded linear operators from X into C(K), the identification being given by

$$(Tx)(t) = F(t)(x), \quad \forall t \in K, \forall x \in X,$$

where $T \in L(X, C(K))$ [2, p. 490].

Received by the editors August 16, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47B99, 46E15.

¹This work was partially supported by FAPESP (São Paulo, Brasil) and was done during a visit to Kent State University (Kent, Ohio).

M(K) denotes the space of regular Borel measures on K, with the norm of the variation, and is identified with $C(K)^*$.

In our case we will use the identification of L(C(K)) with $C_{w*}(K, M(K))$.

For the proof of the result announced in the abstract we need several lemmas.

LEMMA 1. Given $F \in C_{w^*}(K, M(K))$, $\varepsilon > 0$, $f \in C(K)$, $t_0 \in K$ and an open set $V \subset K$, there is U, an open neighborhood of t_0 , such that

(i)
$$|F(t)|(V) \ge |F(t_0)|(V) - \varepsilon, \forall t \in U$$
;

(ii)
$$F(t)(f) \ge F(t_0)(f) - \varepsilon, \forall t \in U$$
.

PROOF. First we show that the function $\nu \in M(K) \mapsto |\nu|(V) \in \mathbf{R}$ is lower semi-continuous, where M(K) has its w*-topology.

In fact, if $\nu_0 \in M(K)$, by Hahn decomposition and regularity of ν_0 we can choose disjoint compact sets K^+ and K^- , contained in V, such that $|\nu_0|(K^+) = \nu_0(K^+)$, $|\nu_0|(K^-) = -\nu_0(K^-)$ and $|\nu_0|(V \setminus K^+ \cup K^-) < \varepsilon/3$.

Since K is compact Hausdorff, we can choose $f_0 \in C(K)$ with $|f_0(t)| \le 1$, $\forall t \in K, f_0|_{K^+} = 1, f_0|_{K^-} = -1$ and $|f_0|_{K \setminus V} = 0$.

Let $A = \{ \nu \in M(K) : |\nu(f_0) - \nu_0(f_0)| < \varepsilon/3 \}$. Then A is a w*-neighborhood of ν_0 , and if $\nu \in A$ we have

$$\begin{split} |\nu|(V) & \geqslant \int_{V} f_{0} \, d|\nu| \geqslant \left| \int_{V} f_{0} \, d\nu \right| = |\nu(f_{0})| > |\nu_{0}(f_{0})| - \frac{\varepsilon}{3} \\ & = \left| \int_{V} f_{0} \, d\nu_{0} \right| - \frac{\varepsilon}{3} \geqslant \int_{V} f_{0} \, d\nu_{0} - \frac{\varepsilon}{3} \\ & = \int_{K^{+}} d\nu_{0} - \int_{K^{-}} d\nu_{0} + \int_{V \setminus K^{+} \cup K^{-}} f_{0} \, d\nu_{0} - \frac{\varepsilon}{3} \\ & > \nu_{0}(K^{+}) - \nu_{0}(K^{-}) - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} > |\nu_{0}|(V) - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} = |\nu_{0}|(V) - \varepsilon. \end{split}$$

Since $F \in C_{w^*}(K, M(K))$, the composite function $t \in K \mapsto |F(t)|(V)$ is also lower semicontinuous. Thus there is an open neighborhood U_1 of t_0 such that for $t \in U_1$ we have $|F(t)|(V) > |F(t_0)|(V) - \varepsilon$.

Also, given $B = \{ \nu \in M(K) : |\nu(f) - F(t_0)(f)| < \varepsilon \}$, which is a w*-neighborhood of $F(t_0) \in M(K)$, there is U_2 , an open neighborhood of t_0 such that for $t \in U_2$ we have $F(t) \in B$, since $F \in C_{w^*}(K, M(K))$. Then if $t \in U_2$ we have $F(t)(f) \ge F(t_0)(f) - \varepsilon$.

Letting $U = U_1 \cap U_2$ we have that U is an open neighborhood of t_0 and, for $t \in U$, (i) and (ii) hold.

LEMMA 2. Given $F \in C_{\mathbf{w}^*}(K, M(K))$ and $\varepsilon > 0$, there are $f_0 \in C(K)$, $||f_0||_{\infty} = 1$ and $t_0 \in K$ such that $F(t_0)(f_0) > ||F|| - \varepsilon$ and $|f_0(t_0)| = 1$.

PROOF. Let $t_0 \in K$ be such that $|F(t_0)|(K) > ||F|| - \varepsilon/3$.

For simplicity let us set $\mu_0 = F(t_0)$. Then $|\mu_0|(K) > ||F|| - \varepsilon/3$.

Using Hahn decomposition and regularity of μ_0 , we can choose disjoint compact sets K^+ and K^- such that $|\mu_0|(K^+) = \mu_0(K^+)$, $|\mu_0|(K^-) = -\mu(K^-)$ and

$$|\mu_0|(K\setminus K^+\cup K^-)<\varepsilon/3.$$

Then
$$\mu_0(K^+) - \mu_0(K^-) > |\mu_0|(K) - \varepsilon/3$$
.

Case I. $t_0 \in K^+ \cup K^-$.

Since K is compact Hausdorff, we can choose $f_0 \in C(K)$, $|f_0(t)| \le 1$, $\forall t \in K$, $|f_0|_{K^+} = 1$, and $|f_0|_{K^-} = -1$.

Then

$$\begin{split} F(t_0)(f_0) &= \int_K f_0 \, d\mu_0 = \int_{K^+} d\mu_0 - \int_{K^-} d\mu_0 + \int_{K \setminus K^+ \cup K^-} f_0 \, d\mu_0 \\ &= \mu_0(K^+) - \mu_0(K^-) + \int_{K \setminus K^+ \cup K^-} f_0 \, d\mu_0. \end{split}$$

Since

$$\left| \int_{K \setminus K^+ \cup K^-} f_0 d\mu_0 \right| \leq |\mu_0| (K \setminus K^+ \cup K^-) < \varepsilon/3,$$

we get

$$F(t_0)(f_0) > \mu_0(K^+) - \mu_0(K^-) - \varepsilon/3 > |\mu_0|(K) - \varepsilon/3 - \varepsilon/3$$
$$> |F| - \varepsilon/3 - \varepsilon/3 - \varepsilon/3 = |F| - \varepsilon.$$

Obviously in this case we have $|f_0(t_0)| = 1$, since $t_0 \in K^+ \cup K^-$ and $|f_0||_{K^+ \cup K^-} = 1$. Case II. $t_0 \notin K^+ \cup K^-$.

Since $K^+ \cup \{t_0\}$ and K^- are again disjoint compact sets, let $f_0 \in C(K)$ be such that $|f_0(t)| \le 1, \forall t \in K, f_0|_{K^+ \cup \{t_0\}} = 1$ and $|f_0|_{K^-} = -1$.

As in Case I we have $F(t_0)(f_0) > ||F|| - \varepsilon$ and $f_0(t_0) = 1$, by definition of f_0 . As an easy consequence we have

COROLLARY 3. $v(T) = ||T||, \forall T \in C(K)$.

The next lemma is a modification of a result of Johnson and Wolfe [3].

LEMMA 4. Given $F \in C_{w^*}(K, M(K))$ and $\varepsilon > 0$, there are open subsets V_1 and V_2 of K, with $\overline{V}_1 \cap \overline{V}_2 = \emptyset$, $V_2 \neq \emptyset$, and there are $f_1 \in C(K)$, $\|f_1\|_{\infty} = 1$, and $F_1 \in C_{w^*}(K, M(K))$ such that

- (i) $|f_1(t)| = 1, \forall t \in K \setminus V_1$;
- (ii) $|F_1(t)|(V_1) = 0, \forall t \in V_2$;
- (iii) $F_1(t)(f_1) > ||F_1|| \varepsilon, \forall t \in V_2;$
- (iv) $||F F_1|| < \varepsilon$.

PROOF. Let $t_0 \in K$ be such that $|F(t_0)|(K) > ||F|| - \varepsilon/4$.

Using (B^+, B^-) a Hahn decomposition of K for $\mu_0 = F(t_0)$ and the regularity of μ_0 , choose $K^+ \subset B^+$ and $K^- \subset B^-$ compact sets such that

$$\mu_0(K^+) - \mu_0(K^-) > |\mu_0|(K) - \varepsilon/4 > ||F|| - \varepsilon/2.$$

As in the proof of Lemma 2, let $f_0 \in C(K)$, $||f_0||_{\infty} = 1$, be such that $|f_0||_{K^+} = 1$, $|f_0||_{K^-} = -1$ and $|f_0||_{K^+ \cup K^- \cup \{t_0\}} = 1$.

For each $\alpha \in]0,1[$, let $A_{\alpha} = \{t \in K: |f_0(t)| < \alpha\}$.

Case I. $A_{\alpha} = \emptyset$, $\forall \alpha \in]0, 1[$.

In this case, $|f_0(t)| = 1$, $\forall t \in K$. Define $f_1 = f_0$, $V_1 = \emptyset$ and $F_1 = F$. Then (i) and (ii) hold for $t \in K$ and (iv) also is satisfied.

Moreover,

$$F_1(t_0)(f_1) = F(t_0)(f_0) \ge \mu_0(K^+) - \mu_0(K^-) - \varepsilon/4 > ||F|| - 3\varepsilon/4.$$

By Lemma 1, using $\varepsilon/4$, there is $V_2 \subset K$, an open neighborhood of t_0 , such that $F_1(t)(f_1) \ge F_1(t_0)(f_1) - \varepsilon/4$, $\forall t \in V_2$.

Then $F_1(t)(f_1) \ge ||F|| - \varepsilon = ||F_1|| - \varepsilon$, $\forall t \in V_2$ and (iii) holds.

Obviously, $V_2 \neq \emptyset$ and $\overline{V}_1 \cap \overline{V}_2 = \emptyset$, and we are done.

Case II. There is $\alpha_0 \in]0, 1[$ with $A_{\alpha_0} \neq \emptyset$.

In this case let β_0 be such that $\alpha_0 < \beta_0 < 1$.

Define $V_1 = \{t \in V: |f_0(t)| < \alpha_0\} = A_{\alpha_0}$ and $W = \{t \in K: |f_0(t)| > \beta_0\}$. Then V_1 and W are open sets, $\overline{V}_1 \cap W = \emptyset$ and $\{t_0\} \cup K^+ \cup K^- \subset W$.

Since $A_{\alpha_0} \neq \emptyset$, fix $t_1 \in V_1$ and choose $f_1, g \in C(K)$, $|f_1(t)| \leq 1$, $0 \leq g(t) \leq 1$, $\forall t \in K$, such that

$$f_1(t) = \begin{cases} 1 & \text{if } t \in \overline{(K \setminus V_1) \cap B^+}, \\ -1 & \text{if } t \in \overline{(K \setminus V_1) \cap B^-}, \\ 0 & \text{if } t = t_1 \end{cases} \text{ and } g(t) = \begin{cases} 0 & \text{if } t \in \overline{W}, \\ 1 & \text{if } t \in \overline{V}_1. \end{cases}$$

Then (i) holds and since

$$[(1-g)f_1](t) = 1$$
 if $t \in K^+$, $[(1-g)f_1](t) = -1$ if $t \in K^-$

and

$$\left| \left[(1-g)f_1 \right](t) \right| \leqslant 1 \quad \text{if } t \in (B^+ \backslash K^+) \cup (B^- \backslash K^-),$$

we have

$$F(t_0)((1-g)f_1) = \int_K (1-g)f_1 d\mu_0$$

$$= \int_{K^+} (1-g)f_1 d\mu_0 + \int_{K^-} (1-g)f_1 d\mu_0$$

$$+ \int_{(B^+ \setminus K^+) \cup (B^- \setminus K^-)} (1-g)f_1 d\mu_0$$

$$\geq \mu_0(K^+) - \mu_0(K^-) - |\mu_0|((B^+ \setminus K^+) \cup (B^- \setminus K^-))$$

$$\geq |\mu_0|(K) - \varepsilon/4 - \varepsilon/4 > ||F|| - 3\varepsilon/4.$$

By Lemma 1, using $\varepsilon/4$, there is $U \subset K$ an open neighborhood of t_0 such that for each $t \in U$,

$$F(t)((1-g)f_1) \ge F(t_0)((1-g)f_1) - \varepsilon/4 > ||F|| - \varepsilon$$

and

$$|F(t)|(W) \ge |F(t_0)|(W) - \varepsilon/4 > ||F|| - \varepsilon.$$

We can take $U \cap \overline{V}_1 = \emptyset$, since $t_0 \notin \overline{V}_1$. Let $V_2 \subset U$ be an open set such that $t_0 \in V_2$ and $\overline{V}_2 \subset U$. In particular, $V_2 \neq \emptyset$ and $\overline{V}_1 \cap \overline{V}_2 = \emptyset$.

Choose $h \in C(K)$, $||h||_{\infty} = 1$, h(t) = 1 if $t \in \overline{V}_2$ and h(t) = 0 if $t \in K \setminus U$ and define $F_1: K \to M(K)$ by $F_1(t) = [1 - h(t)g]F(t)$, $\forall t \in K$, which means

$$F_1(t)(p) = F(t)([1 - h(t)g]p), \quad \forall p \in C(K).$$

Since $g \in C(K)$, $F_1(t) \in M(K)$, $\forall t \in K$ and since $h \in C(K)$ and $F \in C_{w^*}(K, M(K))$, $F_1 \in C_{w^*}(K, M(K))$. Also $|F_1(t)|(K) \leq |F(t)|(K)$, since $||1 - h(t)g||_{\infty} \leq 1$, $\forall t \in K$, and then $||F_1|| \leq ||F||$.

If $t \in V_2$, h(t) = 1 and $F_1(t) = (1 - g)F(t)$. Since $g|_{\overline{V_1}} = 1$, $|F_1(t)|(V_1) = 0$ and (ii) holds. Also

$$F_1(t)(f_1) = F(t)((1-g)f_1) > ||F|| - \varepsilon \ge ||F_1|| - \varepsilon$$

and (iii) holds. For (iv), note that

$$|F(t) - F_1(t)|(K) = |h(t)gF(t)|(K) = 0$$
 if $t \in K \setminus U$,

since $h|_{K\setminus U} = 0$ and

$$|F(t) - F_1(t)|(K) \leq |gF(t)|(K)$$
 if $t \in U$.

But $g|_{\overline{W}} = 0$ and then

$$|gF(t)|(K) = |gF(t)|(K \setminus \overline{W}) \le |F(t)|(K \setminus \overline{W})$$

$$= |F(t)|(K) - |F(t)|(\overline{W}) \le ||F|| - |F(t)|(W)$$

$$< ||F|| - (||F|| - \varepsilon) = \varepsilon \quad \text{if } t \in U.$$

Then

$$||F - F_1|| = \sup\{|F(t) - F_1(t)|(K): t \in K\} \le \varepsilon.$$

The proof of the next lemma can be found in [3, Lemma 2.4].

LEMMA 5. Let $F \in C_{\mathbf{w}^*}(K, M(K))$, $V_1, V_2 \subset K$ open sets, $t_0 \in V_2$, $f_0 \in C(K)$, $||f_0||_{\infty} = 1$, be such that

- (a) $|F(t)|(V_1) = 0, \forall t \in V_2$;
- (b) $F(t_0)(f_0) \ge ||F|| \varepsilon$;
- (c) $|f_0(t)| = 1, \forall t \in K \setminus V_1$.

Then for every r > 2/3, there is $F_1 \in C_{w^*}(K, M(K))$, and there is $t_1 \in V_2$ such that

- (i) $|F_1(t)|(V_1) = 0, \forall t \in V_2$;
- (ii) $F_1(t_1)(f_0) \ge ||F_1|| r\varepsilon$;
- (iii) $||F F_1|| < r\varepsilon$.

THEOREM 6. $\overline{NRA(C(K))} = L(C(K))$.

PROOF. Let $T \in L(C(K))$ and $\varepsilon > 0$ be given, and let $F \in C_{w^*}(K, M(K))$ be the representative of T.

Take 2/3 < r < 1 and apply Lemma 4 to get $F_0 \in C_{w^*}(K, M(K)), V_1, V_2 \subset K$ open sets, $\overline{V}_1 \cap \overline{V}_2 = \emptyset$, $V_2 \neq \emptyset$, $f_0 \in C(K)$, $||f_0||_{\infty} = 1$, such that

- (a) $|F_0(t)|(V_1) = 0, \forall t \in V_2$;
- (b) $F_0(t)(f_0) > ||F_0|| \varepsilon(1-r), \forall t \in V_2$;
- (c) $|f_0(t)| = 1, \forall t \in K \setminus V_1$;
- $(d) ||F F_0|| < \varepsilon (1 r).$

Choose $t_0 \in V_2$ such that

(b') $F_0(t_0)(f_0) > ||F_0|| - \varepsilon(1-r)$, and let $\lambda = ||F_0|| - F_0(t_0)(f_0)$. Then $0 \le \lambda < \varepsilon(1-r)$.

Case I. $\lambda = 0$.

In this case, $||F_0|| = F_0(t_0)(f_0) = \delta_{t_0}(T_0f_0)$, where $T_0 \in L(C(K))$ corresponds to F_0 .

Defining $\mu_0 = (\operatorname{sgn} f_0(t_0))\delta_{t_0}$, we have $\mu_0(f_0) = |f_0(t_0)| = 1$, since $t_0 \in V_2$ and $V_1 \cap V_2 = \emptyset$, and $|\mu_0|(K) = 1$. Then $(f_0, \mu_0) \in \Pi(C(K))$.

Also we have $T_0 \in NRA(C(K))$, for

$$|\mu_0(T_0f_0)| = |\delta_{t_0}(T_0f_0)| = ||F_0|| = ||T_0||.$$

From (d), $||T - T_0|| = ||F - F_0|| < \varepsilon(1 - r) < \varepsilon$, and we are done.

Case II. $\lambda > 0$.

By definition of λ ,

(b")
$$F_0(t_0)(f_0) = ||F_0|| - \lambda$$
.

Now (a), (b") and (c) allow us to apply Lemma 5 and get $F_1 \in C_{w^*}(K, M(K))$ and $t_1 \in V_2$ such that

$$(\mathbf{a}_1) | F_1(t) | (V_1) = 0, \forall t \in V_2;$$

$$(b_1) F_1(t_1)(f_0) \ge ||F_1|| - r\lambda;$$

$$(\mathbf{d}_1) \| F_0 - F_1 \| < r \lambda.$$

Again (a_1) , (b_1) and (c) allow us to apply Lemma 5 and get $F_2 \in C_{w^*}(K, M(K))$ and $t_2 \in V_2$ such that

$$(a_2)|F_2(t)|(V_1) = 0, \forall t \in V_2;$$

$$(b_2) F_2(t_2)(f_0) \ge ||F_2|| - r^2 \lambda;$$

$$(d_2) ||F_1 - F_2|| < r^2 \lambda.$$

Following in this way we get sequences $\{F_n\}$ in $C_{w^*}(K, M(K))$ and $\{t_n\}$ in V_2 such that for each $n \in \mathbb{N}$,

$$(b_n) F_n(t_n)(f_0) \ge ||F_n|| - r^n \lambda;$$

$$(\mathbf{d}_n)\|F_{n-1}-F_n\|\leqslant r^n\lambda.$$

Since K is compact, $\{t_n\}$ has a subsequence convergent to some $\tilde{t} \in K$. But $t_n \in V_2$, $\forall n \in \mathbb{N}$ and then $\tilde{t} \in \overline{V_2}$. We still denote this subsequence by $\{t_n\}$.

On the other hand, if $m > n \ge 1$, by (d_n) it follows that

$$||F_n - F_m|| \le \sum_{k=n+1}^m ||F_k - F_{k-1}|| \le \left(\sum_{k=n+1}^m r^k\right) \lambda.$$

Since r < 1, this shows that $\{F_n\}$ is Cauchy in $C_{w^*}(K, M(K))$ and so is $\{T_n\}$ in L(C(K)), where T_n corresponds to F_n , $\forall n \in \mathbb{N}$.

Let $\tilde{T} \in L(C(K))$ be the limit of $\{T_n\}$ and \tilde{F} its correspondent in $C_{w^*}(K, M(K))$. We have

$$||T - T_n|| \le ||T - T_0|| + ||T_0 - T_n|| \le \varepsilon (1 - r) + \left(\sum_{k=1}^n r^k\right) \lambda$$
$$\le \varepsilon (1 - r) + \frac{r}{1 - r} \varepsilon (1 - r) = \varepsilon, \quad \forall n \in \mathbb{N}.$$

From this it follows that $||T - \tilde{T}|| \le \varepsilon$.

It remains to show that $\tilde{T} \in NRA(C(K))$.

From
$$|\tilde{F}(t_n)(f_0) - F_n(t_n)(f_0)| \le ||\tilde{F} - F_n||$$
 and (b_n) we get
$$\tilde{F}(t_n)(f_0) \ge F_n(t_n)(f_0) - ||\tilde{F} - F_n|| \ge ||F_n|| - r^n\lambda - ||\tilde{F} - F_n||$$
$$\ge ||\tilde{F}|| - r^n\lambda - 2||\tilde{F} - F_n||, \quad \forall n \in \mathbb{N},$$

and since

$$\|\tilde{F} - F_n\| \le \left(\sum_{k=n+1}^{\infty} r^k\right) \lambda = \frac{r^{n+1}}{1-r} \lambda < r^{n+1}, \quad \forall n \in \mathbb{N},$$

we have

$$\tilde{F}(t_n)(f_0) \geqslant ||\tilde{F}|| - r^n \varepsilon (1-r) - 2r^{n+1} \varepsilon = ||\tilde{F}|| - r^n \varepsilon (3-r).$$

Now, since \tilde{F} is w*-continuous and $t_n \to \tilde{t}$ and $r^n \to 0$, we have

$$\tilde{F}(\tilde{t})(f_0) \geqslant \|\tilde{F}\|$$
 or $\delta_{\tilde{t}}(\tilde{T}f_0) \geqslant \|\tilde{T}\|$.

Also $|f_0(\tilde{t})| = \lim_{n \to \infty} |f_0(t_n)| = 1$, since f_0 is continuous, $t_n \to \tilde{t}$ and $|f_0(t_n)| = 1$, because $t_n \in V_2$ and $\overline{V_2} \cap \overline{V_1} = \emptyset$.

Defining $\tilde{\mu} = (\operatorname{sgn} f_0(\tilde{t}))\delta_{\tilde{t}}$, we have $\tilde{\mu} \in M(K)$, $|\tilde{\mu}|(K) = 1$, and $\tilde{\mu}(f_0) = |f_0(\tilde{t})| = 1$. Then $(f_0, \tilde{\mu}) \in \Pi(C(K))$.

Since $|\tilde{\mu}(\tilde{T}f_0)| = |\delta_{\tilde{t}}(\tilde{T}f_0)| \ge ||\tilde{T}||$ and $||\tilde{T}|| = v(\tilde{T})$, by Corollary 3, we get $|\tilde{\mu}(\tilde{T}f_0)| \ge v(\tilde{T})$. But $v(\tilde{T}) \ge |\tilde{\mu}(\tilde{T}f_0)|$, and then $v(\tilde{T}) = |\tilde{\mu}(\tilde{T}f_0)|$ and $\tilde{T} \in NRA(C(K))$.

ACKNOWLEDGEMENT. We are grateful to Professor Joseph Diestel for introducing us to the subject of this work and for his help during the preparation of this paper.

REFERENCES

- 1. I. D. Berg and B. Sims, *Denseness of numerical radius attaining operators*, J. Austral. Math. Soc. Ser. A **36** (1984), 130-133.
 - 2. N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.
 - 3. J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. 65 (1979), 7-19.
 - 4. J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148.

Instituto de Matemática e Estatística, Universidade de São Paulo, C. P. 20.570 (Ag. Iguatemi), 01498-São Paulo, SP-Brasil