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NUMERICAL RADIUS-ATTAINING OPERATORS ON C(K)

CARMEN SILVIA CARDASSI1

Abstract. Using a construction due to Johnson and Wolfe, we show that the

numerical radius-attaining operators from C( K ) into itself are dense in the space of

all operators, where A" is a compact Hausdorff space.

Let Ibe a Banach space, L(X) the Banach space of bounded linear operators

from X into X, and NRA^) the subset of L(X) consisting of the numerical

radius-attaining operators.

Berg and Sims [1] have proved the "Bishop-Phelps type" result that NRA(A') is

dense in L(X) when X is uniformly convex. Elsewhere we have shown the same to

be so for Xbeing c0, /,, F,(p) or a uniformly smooth space.

In this note we consider the case of X = C(K), the space of continuous real-val-

ued functions on the compact Hausdorff space K. Following the lead of Johnson

and Wolfe [3], we again show that NRA(C(/_ )) is dense in L(C(K)).

We still do not know of any X for which NRA(A') is not dense in L(X). It may

be that Lindenstrauss's example, using a renorming of c0, for which the norm-attain-

ing operators are not dense in L(X) [4] also serves in the present setup, but we have

not yet found that to be so.

We introduce initially some definitions and notations.

We define the numerical radius of a bounded linear operator T: X -* X, denoted

by v(T), by

v(T) = sup{|jc*(rjt)|: (x, x*) g n(A-)},

where îl(X) = {(x, x*) g X X X*: \\x*\\ = \\x\\ = x*(x) = 1}.

We say that T attains its numerical radius if there is (x0, x$) G U(X) such that

v(T) = \x$(Tx0)\, and we denote the set of numerical radius-attaining operators by

NRA(A').

If AT is a compact Hausdorff space and A" is a Banach space, we denote by

CW*(K, X*) the Banach space of continuous functions F: K -» X*, where X* is

equipped with its w*-topology, with the norm ||F|| = sup{||F(i)||: t e K}.

It is a well-known result that CW„(.<Y, X*) can be identified, isomorphically and

isometrically, with the space L(X, C(K)) of all bounded linear operators from X

into C( K ), the identification being given by

(Tx)(t) = F(t)(x),   Vz g K, Vx g X,

where T g L(X, C(K)) [2, p. 490].
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M(K) denotes the space of regular Borel measures on K, with the norm of the

variation, and is identified with C(K)*.

In our case we will use the identification of L(C(K)) with CV1*(K, M(K)).

For the proof of the result announced in the abstract we need several lemmas.

Lemma 1. Given F g Cw.(K, M(K)), e > 0, /g C(K), t0<= K and an open set

V c K, there is U, an open neighborhood of t0, such that

(i)\F(t)\(V)>\F(t0)\(V)-e.Vt^ U;

(ii)F(O(/)>F(í0)(/)--,VíG[/.

Proof. First we show that the function v g M(K) >-» \vfV) g R is lower semi-

continuous, where M(K) has its w*-topology.

In fact, if v0 g M( K ), by Hahn decomposition and regularity of v0 we can choose

disjoint compact sets K+ and K~, contained in V, such that \v0\(K+) = v0(K+),

\v0\(K~) = -v0(K~) and K|(^\ K+U K') < e/3.

Since K is compact Hausdorff, we can choose /0 g C(K) with |/0(f)| < 1»

V?g/-,/0|^= l,f0\K- = -land/0|^x)/=0.

Let A = {v g M(K): \v(f0) - v0(f0)\ < e/3}. Then A is a w*-neighborhood of

v0, and if v g A we have

K/o)l>h(/o)|-f\'\(V)> f f0d\v\>  f fodp
J y J y

= J  /o ävo - f > J  /o ävo -
f

f    dv0- f    dp0 + f /0 dvQ - \
'K* JK~ JV\K+UK-

> v0(K+) - r0(K~) - | - | > \v0\(V) - f - f - f = W(n - «•
Since FeCw,(i,M(fï)), the composite function t g AT -> |F(i)|(^) is also

lower semicontinuous. Thus there is an open neighborhood t/, of t0 such that for

t g £/, we have |JF(.)|(K) > |F(.0)|(F) - e.

Also, given 5 = [v G M(K): \v(f) - F(.0X/)| < £}, which is a w*-neighbor-

hood of F(i0) G M(K), there is t/2, an open neighborhood of .0 such that for t g U2

we have F(.) g B, since F g Cw,(/C, M(K)). Then if / g t/2 we have F(t)(f) >

íXíoX/) - £•
Letting U = U1 n i/2 we have that Í/ is an open neighborhood of /0 and, for

t g [/, (i) and (ii) hold.

Lemma 2. Given F G Cw-(#, M(K)) and e > 0, there are /„ g C(J-T), H/qIL = 1

í.«dí0 g Ksuch that F(t0)(f0) > \\F\\ - eand\f0(t0)\ = 1.

Proof. Let t0 g AT be such that |F(.0)|(A:) > ||F|| - e/3.

For simplicity let us set p0 = F(t0). Then |p0|(K) > \\F\\ - e/3.

Using Hahn decomposition and regularity of p0, we can choose disjoint compact

sets K+ and K~ such that \p0\(K+) = Po(K+X \Po\(K~) = ~ß(K~) and

|p0|(A-\_i+UÄ'-)<e/3.

Then p0( A-+) - p0(K~) > \u0\(K) - e/3.
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Case 1.10 ei+U AT.

Since K is compact Hausdorff, we can choose/0 g C(K), \f0(t)\ < 1, V? g K,

/ol/r= 1, and/0|^-= -1.
Then

^('o)(/o) " / /odH " /    ^o - /     dp0+ f f0dp0
JK JK* JK~ JK\K*UK-

p0(K+) - p0(K~) + f fQdu0.
K\K+uK-

Since

we get

/.
K\K+UK~

fodp{ ^\u0\(K\K+UK-)<e/3,

F(t0)(f0) > Ho(K+) - P-o(K-) - e/3 > \¡i0\(K) - e/3 - e/3

> ||F|| - e/3 - e/3 - e/3 = ||F|| - e.

Obviously in this case we have |/0 (_0) | = l,since.0 G K+\J K~ aná\f0\ \K*uK-= 1.

Case IL t0 € A_ + U AT.

Since A?+U{.0} and K~ are again disjoint compact sets, let f0 e C(_.) be such

that|/0(.)| < 1, V. g K,f0\K,u[h) = 1 and/0|^-= -1.

As in Case I we have F(t0)(f0) > \\F\\ - e and/0(i0) = 1, by definition off0.

As an easy consequence we have

Corollary 3. v(T) = ||F||, V T g C(K).

The next lemma is a modification of a result of Johnson and Wolfe [3].

Lemma 4. Given F g Cv,(K, M(K)) ande > 0, there are open subsets V1 and V2 of

K, with Vx n V2 = 0, V2 * 0, and there are /, g C(K), U/,^ = 1, and F, g

CW4K,M(K)) such that

(i)\f1(t)\ = l,Vt<EK\V1;

(ü)|F1(í)|(F1) = 0,Víg V2;

(iii)F1(í)(/1)>||F1||-e,VíG V2;

(iv)\\F-Fl\\<e.

Proof. Let i„G/_be such that \F(t0)^K) > \\F\\ - e/4.

Using (B+, B~) a Hahn decomposition of K for ¡ti0 = F(.0) and the regularity of

¡ti0, choose K+cz B+ and K~<z B~ compact sets such that

u0(K+) - u0(K~) > \u0\(K) - e/4 > ||F|| - e/2.

As in the proof of Lemma 2, let fQ g C(K), Il/oïl-. = 1, be such that f0\K+= 1,

fo\fc= -landl/oll/r+u*r-u{z0)= L

For each a g]0,1[, \etAa = {i g K: \f0(t)\ < a).

Case l.Aa = 0,Va g]0,1[.

In this case, \f0(t)\ = l,Vi6z\. Define/, =/0, F, = 0 and F, = F. Then (i)

and (ii) hold for . G A" and (iv) also is satisfied.
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Moreover,

*-('.)(/_) = H<o)(fo) > Mo(*+) - h(K-) - e/4 > ||F|| - 3e/4.

By Lemma 1, using e/4, there is V2 c K, an open neighborhood of /0, such that

Fi(t)(fi)> F^.oXA)- e/4,V t G V2.
Then F^-XA) > ||F|| - e = ||F,|| - e, V t G F, and (iii) holds.

Obviously, V2 + 0 and V1 Ci V2= 0, and we are done.

Coy«? II. There is a0 g ]0,1[ with __„o # 0.

In this case let ß0 be such that a0 < ßQ < I.

Define F, = {/ g K: |/0(.)| < a0} = __ao and IF = {. g AT: |/0(.)| > ¿80}. Then

Vl and IF are open sets, Vl D W = 0 and {i0} uTuFc IF.

Since Aa¡¡± 0, fix i, G F, and choose /,, g G C(AT), |/,(.)l < 1, 0 < g(t) < 1,

V í g K, such that

i      ifiG  at\f,  nb+, ___
. Í   , 7-—s- I   \        / 0       if í G   IF,
/.(0=(-l    if. g (tf\F,)n B-,       and      g(r) = /       .f;eP

(o       if.«., *'

Then (i) holds and since

[(i-g)/i](0-i   if t^K\     [(\-g)fi\(t)= -i  if/g a:-

and

|[(i - g)/i](0l< 1   if í e (¿?+\_r) u(_r\/r),
we have

Hh)((l - 8)fi) - f (l-g)/idMo

= /   (i-g)/1dp0 + /   (i-g)/,d|_0

+ [ (l-g)fidp-o
J(B+\K*)U(B-\K-)

> u0(K+) - p0(A-) -\u0\((B+\K+) U(B-\K-))

>\p0\(K) - e/4 - e/4 >\\F\\- 3e/4.

By Lemma 1, using e/4, there is U c K an open neighborhood of t0 such that for

each t g U,

F(t)((l - g)fi) > F(t0)((l - g)/,) - e/4 > ||F|| - e

and

\F(t)\(W) >\F(t0)\(W) - e/4 >\\F\\- e.

We can take U n F, = 0, since i0 £ F,. Let V2 c [/ be an open set such that

r0 g F2 and F2 c U. In particular, F2 # 0 and VlC\V2= 0.

Choose /i g C(A:), UAH« = 1, fc(f) = 1 if t g V2 and *(/) = 0 if t g /_ \ U and

define F,: /. -> M( AT) by F,(.) = [1 - h(t)g]F(t), V í g K, which means

F,(.)(/>) = F(.)([l - *(')*]/>),       Vp G C(K).
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Since g g C(K), Fx(t) g M(K), V . g A" and since h g C(K) and

F g Cw-(_r, A/(J. )), F, g Cw.(_¡-, M(_0). Also |F,(.)KA:) < |F(.)|(A"), since

111 - h(t)g\\x < 1, V r g /_, and then ||F,|| < ||F||.

If f g V2, h(t) = 1 and F,(0 = (1 - g)F(0- Since g|Fi = 1, |F,(r)KF,) - 0 and

(ii) holds. Also

F,(0(/_) - F(0((1 - g)/i) > M - e > IIFJI - e
and (iii) holds. For (iv), note that

\F(t) - F,(.)|(#) = \h(t)gF(t)\(K) = 0   if t e AT\ Í/,

since/.|^^^ = 0 and

|F(/)-F1(0|(A')<|gF(í)|(A-)    ifíGÍ/.

But g|pp = 0 and then

|gF(0|(A-)=|gF(0|(A-\ÍF)<|F(0|(A'\ÍF)

= |F(/)|(A-)-|F(/)|(IF)<||F||-|F(0|(lF)

<||F||-(||F||-e) = e    if t G Í/.

Then

||F - F,|| - sup{|F(.) - F,(.)!(*): t g k) < e.

The proof of the next lemma can be found in [3, Lemma 2.4].

Lemma 5. Let F g Cw,(/_, M(K)), F„ F2 c A~ open -./s, /0 g F2, /0 g C(AT),

||/olL = l, be suchthat

(a)|F(í)|(F1) = 0,VíG F2;

(b)F(.0)(/0)>||F||-e;

Çc)j/0(f)t-l.Vfe*\F_.
Then for every r > 2/3, i/z-/"- « F, G CV/*(K, M(K)), and there is i, G F2 _«_/z dza.

(i)|F1(0|(F1) = 0,VíGF2;

(ii)Fl(t1)(f0)>\\F1\\-re;

(iii)\\F- F^Kre.

Theorem 6. NRA(C(_0) = L(C(K)).

Proof. Let T g L(C(K)) and e > 0 be given, and let F g Cw.(A:, M(K)) be the

representative of T.

Take 2/3 < r< 1 and apply Lemma 4 to get F0 g Cw-(AT, M(K)), F„ F2 c a:

open sets, F, n ^ 0,F2?t 0,/oe C(AT), ||yolloo = 1. such that

(a)|Fo(r)|(F1) = 0,VíG F2;

(b) F0(i)(/0) > ||F0|| - e(l - r), V / G F2;

(cJI/oiOI-l.V/eATXF,;
(d)||F-F0||<e(l-/-).

Choose .0 G F2 such that

(b') F0(i0)(/o) > ||F0|| - e(l - r), and let X = ||F0|| - F0(.0X/0). Then 0 < A <

e(l - r).
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Case I. X = 0.

In this case, ||F0|| = F0(f0)(/0) = S,o(T0f0), where T0 g L(C(K)) corresponds to

F0-

Defining p0 = (sgn/0(.0))S,o, we have p0(/0) = |/0(.0)| = 1, since t0 g F2 and

F,n F2= 0,and|po|(_i)=l.Then(/o,po)Gn(C(^)).

Also we have T0 G NRA(C(AT)), for

|Mo(7o/o)I=K(7o/o)|=I|FoI|=||F0||.

From (d), ||F — F0|| = ||F — F0|| < e(l — r) < e, and we are done.

Case II. X > 0.

By definition of A,

(b")F0(.0X/o) = ||F0||-X.

Now (a), (b") and (c) allow us to apply Lemma 5 and get F, g Cw.(A_, M(K))

and /, g V2 such that

(a1)|F,(.)KF1) = 0,V.e r/;

(b,) F^fjX/o) > \\FX\\ - rX;
(d,)||F0-F,||<rX.

Again (a,), (b,) and (c) allow us to apply Lemma 5 and get F2 g Cw„(AT, M(K))

and i2 G F2 such that

(a2)|F2(O|(F1) = 0,VrGF2;

(b2)F2(/2X/o)>||F2||-/-2\;

(d2)||F1-F2||<r2X.

Following in this way we get sequences ( F„} in Cw. ( K, M( K )) and {tn} in V2

such that for each zieN,

(b„) F„(t„)(f0) > IIFJI - r"X;
(dB)||F._1-F„||<r"A.

Since K is compact, {rn} has a subsequence convergent to some t G A\ But

i„e F2, V « g N and then r g F2. We still denote this subsequence by {t_}.

On the other hand, if m > zz > 1, by (d _) it follows that

m /       m \

I|F„-FJU     E    IK-^-ilU       S    r*  X.
Zc-n + l \Zc = n + l      /

Since r < 1, this shows that {F„} is Cauchy in CW,(AT, M(K)) and so is {T„} in

L(C(A:)), where F„ corresponds to F„, V « g N.

Let F G L(C(AT)) be the limit of {Tn} and Fits correspondent in CW»(AT, M(K)).

We have

\\T - Tn\\ <||r - F0|| + ||r0 - r-|| < e(l - r) +1 £ r* jx

< e(l - r) + zr^-e(l - r) - e,       VzzgN.

From this it follows that \\T — f\\ < e.

It remains to show that f g NRA(C(AT)).
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From |F(._X/o) - Fn(tn)(f0)\ < ||F - FJ| and (b„) we get

F(Ü(/o) > Fn(tn)(f0) - \\F - FJI > IIFJI - r»X - ||F - F.||

>||F|| -r"X-2||F-Fj,       Vn_N,

and since

/      °° \ r" + 1
I|F-FJ<       £    r*   X= ~-X<r"+1,       VzzGN,

\ * - n +1      / r

we have

F(0(/o) > \\F\\ - r"e(l - r) - 2r"+1e = ||F|| - z-"e(3 - r).

Now, since Fis w*-continuous and t„-* t and r" -* 0, we have

F(?)(/o)»||F||    or   fi?(f/0) >||f||.

Also |/0(f)| = lim__.00|A(in)| = 1, since/0 is continuous, t„ -* t and |/0(i„)| = 1,

because .„ g F2 and K2n F, = 0.

Defining jx = (sgn /0(í))ár-, we have p g M(AT), |/ij(_K") = 1, and p(/0) = |/0(f)| =

l.Then(/0,p)Gn(C(A:)).

Since |A(f/0)| - |S;(f/0)| > \\f\\ and ||f|| - v(f), by Corollary 3, we get |A(f/0)|

ïï v(t). But v(f) > |A(F/0)|, and then z;(F) = |A(F/0)| and f G NRA(C(AT)).
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