## CONSTRUCTION OF A DIFFERENTIAL EQUATION y'' + Ay = 0WITH SOLUTIONS HAVING THE PRESCRIBED ZEROS

## LI-CHIEN SHEN

ABSTRACT. We show that an entire function A(z) can be constructed so that the differential equation y'' + Ay = 0 has two linearly independent solutions having the prescribed points as their only zeros.

The main purpose of this brief note is to prove

THEOREM 1. Let  $\{a_n\}$  and  $\{b_n\}$  be two given sequences with no finite limit point. If the two sequences have no points in common, that is  $a_n \neq b_m$  for any n and m (n, m = 1, 2, 3, ...), then there exists an entire function A(z) such that the differential equation y'' + Ay = 0 has two linearly independent solutions  $w_1$  and  $w_2$  whose only zeros are  $\{a_n\}$  and  $\{b_n\}$ , respectively.

## 1. Preliminaries. Consider the differential equation (D.E.)

$$(1.1) y'' + A(z)y = 0,$$

where A is entire. It is well known that

- (i) all the solution of (1.1) are entire;
- (ii) if  $w_1$  and  $w_2$  are two linearly independent solutions, then the Wronskian  $W(z; w_1, w_2) = w_1 w_2' w_1' w_2$  is constant, with no loss of generality, we assume that this constant is 1;
  - (iii) if  $z_0$  is a zero of a solution, then its multiplicity is always equal to 1.

We say that an entire function f has the BL property if, for each one of its zeros, say a, we have either f'(a) = 1 or f'(a) = -1. Set

(1.2) 
$$f(z) = w_1(z) \cdot w_2(z).$$

It is easy to derive that f satisfies the D.E.

$$(1.3) -4Af^2 = 1 - (f')^2 + 2ff''.$$

From (1.3) we readily conclude

LEMMA 1.1. Let  $w_1$  and  $w_2$  be two linearly independent solutions of (1.1). Then  $f = w_1w_2$  has the BL property.

It is an elementary exercise to show that if an entire function f has the BL property, then the function A defined by

$$(1.4) -4A(z) = (1/f^2) - (f'/f)^2 + 2(f''/f)$$

Received by the editors October 4, 1984.

<sup>1980</sup> Mathematics Subject Classification. Primary 30A20, 30D35; Secondary 34A30.

Key words and phrases. Entire function, multiplicity, zeros of solutions, linearly independent solution.

is entire. With this fact in mind, we now establish

LEMMA 1.2. Let f be an entire function with the BL property. Then  $f = w_1w_2$ , where  $w_1$  and  $w_2$  are some linearly independent solutions of D.E. with A defined by (1.4).

PROOF. Let  $z_0$  be a point such that  $f(z_0) \neq 0$ . Then we can choose a disk  $D = \{z: |z - z_0| < r_0\}$  with the property that  $f(z) \neq 0$  for all  $z \in D$ . In D, we define (by choosing a branch)

(1.5) 
$$w_1(z) = (f)^{1/2} \exp\left(-\frac{1}{2} \int_{z_0}^z \frac{1}{f(s)} \, ds\right),$$

and

(1.6) 
$$w_2(z) = (f)^{1/2} \exp\left(\frac{1}{2} \int_{z_0}^z \frac{1}{f(s)} ds\right).$$

Although it is not clear at the outset that  $w_1$  and  $w_2$  can be analytically continued uniquely to the entire complex plane, by a straightforward substitution, however, it can be easily shown that  $w_1$  and  $w_2$  both satisfy the D.E. (1.1) with A defined by (1.4). Thus, from (i), we conclude that  $w_1$  and  $w_2$  are both entire and  $f = w_1 w_2$ .

From Lemmas 1.1 and 1.2, we conclude

COROLLARY 1.3. An entire function f has the BL property iff f is a product of two linearly independent solutions of D.E. (1.1).

**2. Proof of Theorem 1.** Choose an entire function g(z) so that its only zeros are  $\{a_n\} \cup \{b_n\}$  and the multiplicity of each zero is one. We also choose an entire function h such that

(2.1) 
$$\exp(h(z)) = \begin{cases} -1/g'(a_n) & \text{if } z = a_n, \\ 1/g'(b_n) & \text{if } z = b_n. \end{cases}$$

The algorithms to construct g and h are well known; however, such g and h are not unique [1, pp. 295 and 298].

Define

$$(2.2) f = g \exp(h).$$

Then, from (2.1), f has the BL property and

(2.3) 
$$f'(z) = \begin{cases} -1 & \text{if } z = a_n, \\ 1 & \text{if } z = b_n. \end{cases}$$

Thus, from Lemma 1.2, there exists an entire function A and  $f = w_1w_2$ , where  $w_1$  and  $w_2$  are two linearly independent solutions of the D.E. y'' + A(z)y = 0 defined by (1.5) and (1.6) respectively. We now show that  $w_1$  and  $w_2$  have the desired property.

Let

(2.4) 
$$F(z) = \exp\left(\int_{-\infty}^{z} 1/f(s) \, ds\right).$$

From (1.5),  $F(z) = f/w_1^2$ . Therefore, F(z) is meromorphic. From (2.3), we see that in a small neighborhood U of  $z = a_n$ 

(2.5) 
$$1/f(z) = -1/(z - a_n) + H_n(z),$$

where  $H_n$  is holomorphic in U. From (2.4) and (2.5),

(2.6) 
$$F'/F = 1/f = -1/(z - a_n) + H_n(z) \qquad (z \in U).$$

Therefore, (2.6) implies that F has a simple pole at  $z=a_n$ . A similar argument shows that F has a simple zero at  $z=b_n$ . Since the only zeros of f are  $\{a_n\} \cup \{b_n\}$ , hence  $\{a_n\}$  and  $\{b_n\}$  are the only poles and zeros of F, respectively. This immediately implies that F' (= F/f) has no zeros and has double poles at  $\{a_n\}$ . Thus  $w_1=1/(F')^{1/2}$  is an entire function whose zeros are precisely  $\{a_n\}$ . Since  $w_2=w_1F$ , the only zeros of  $w_2$  are  $\{b_n\}$ . This completes the proof.

## REFERENCES

1. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210

Current address: Department of Mathematics, University of Florida, Gainesville, Florida 32611