
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 95, Number 4, December 1985

CLASSIFICATION OF SEMICROSSED PRODUCTS
OF FINITE-DIMENSIONAL C'-ALGEBRAS

LUZ M. DEALBA AND JUSTIN PETERS

ABSTRACT. Let 21, ÍB be finite-dimensional C*-algebras with automorphisms

a, ß, respectively. Then the semicrossed products Z+ Xq 31, Z+ x^ Í8 are

isomorphic iff there is an isomorphism t/>: 21 —> Q. and a unitary U £ *8 such

that ß o V = (Ad U)ip o ct.

I. Introduction. In 1969 Arveson and Josephson [1] studied a class of operator

algebras which arise in the following way: Let X be a locally compact Hausdorff

space equipped with a self-homeomorphism <f>, and an invariant regular Borel proba-

bility measure p. Let L be the representation of the continuous functions vanishing

at infinity, Cq(X), on L2(X,ft) given by L¡g = fg (f G Cq(X), g G L2(X, ft)) and
U the unitary on L2(X,ft) coming from the action of <p: Ug = g o <p. It is readily

verified that the collection of all finite sums of the form Y^l=i LfJJ1 (/. G Cn(X),

1 < , < n, n G Z+) is an algebra, and the Arveson-Josephson algebra 2l(_\T, 0) is

the norm closure in B(L2(X, ft)) of this set of operators. The pairs (Xi,</>i) and

(X<2,<t>2) are said to be conjugate if there exists a homeomorphism ip:X2 —► Xi

such that <f>i o ip = th o (f>2. The principal aim of [1] was to show, under certain

conditions, that the algebras 2l(Xi,0i) and 2l(J_2,4>i) are isomorphic if and only

if the pairs (Xi,<pi), (X2,<fo) are conjugate.

In [8] it was shown that the Arveson-Josephson algebras can be considered as

an example of a larger class of algebras called semicrossed products. Given a C*-

algebra 21 and an endomorphism a of 21, the semicrossed product Z+ xa 21 is

an operator algebra which can be defined by a universal mapping property. This

definition of the semicrossed product is analogous to that of the crossed product

and will be discussed below. If 21 — Cq(X), where X is a locally compact Hausdorff

space, a(f) = f o <f>, f G Cq(X) and <j> a self-homeomorphism of X (satisfying

[1, conditions l.l(i), (ii) and (iii)]), then 2t(X,</)) = Z+ xa C0(X). Thus, the

question of Arveson and Josephson, as to whether the isomorphism of the algebras

2l(Xi,</>i), 2l(X2,02) implies the conjugacy of the pairs (Xi,<pi), (X2,(p2), can be

placed in the more general setting of semicrossed products. In this paper we show

that if 21 and 93 are finite-dimensional C*-algebras with automorphisms a and ß,

respectively, then the semicrossed products Z+ xQ 21 and Z+ x^ 03 are isomorphic

if and only if there is an isomorphism tp : 21 —» 53, and a unitary U G *B, such that

ß o t¡) = (Ad U)t¡) o q. This result emerges from a detailed analysis of the Banach

algebras Z+ xa 21 and the strong structure space of such algebras, where 21 is a

finite-dimensional C*-algebra. The analogous result for C*-crossed products fails.

It is possible for Z xa 21, Z Xß 23 to be isomorphic without 21, 03 being isomorphic.
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We begin with a discussion of representation theory for semicrossed products

and then restrict our attention to semicrossed products of finite-dimensional C*-

algebras.

II. Representations of semicrossed products. Let a be an automorphism

of a C*-algebra 21 (all C*-algebras will be assumed separable). Recall [7] that

the Banach algebra Z1(Z,21,q) consists of functions F:Z —> 21 such that ||F||i =

Enezll^WII < °°> and multiplication (FG)(m) = £„eZ F(n)an(G(m - n)),
F,G G ll(Z, 21, a). Also, /1(Z, 21, a) has an involution given by

F*{n) = an(F (-n)*).

The C*-crossed product, Z xQ 21, is then defined as the C*-enveloping algebra of

the involutive Banach algebra ^(Z,^, a). However, if we ignore the involution

in Z1(Z,21,q), the crossed product Z xQ 21 can be realized as the enveloping Ba-

nach algebra with respect to the class of contractive Hilbert space representations.

Specifically, if we define a norm on /x(Z,2l,a) by

\\F\\ = sup 1111(2011,
neC

where II G C if and only if II is a contractive representation II: _1(Z, 21, a) —> B(U),

for some (separable) Hilbert space U, then this norm agrees with the crossed product

norm of F. While these facts, which follow from [5, Theorem 4.4], will not be needed

later, they serve as motivation for the definition of the semicrossed product.

ILL   Let /1(Z+,2l,a) be the subalgebra of Z1(Z,21,q) consisting of functions

supported on the nonnegative integers. Note that i1(Z+,2l, a) is not closed under

the involution in 7l(Z,2l, a).   The semicrossed product Z+ xQ 21 is then defined

as the enveloping Banach algebra with respect to the class of contractive Hilbert

space representations. In other words, by analogy with the preceding paragraph,

if C is the class of contractive representations n:/1(Z+,2l,a) —► B(H), for some

(separable) Hilbert space M, then Z+ xQ 21 is the completion of .1(Z+,2l,a) with

respect to the norm

\\F\\ = sup ||n(F)||.
neC

II.2. DEFINITION. Let p: 21 -> B(M) be a representation of the C*-algebra 21,

and let T G B(M), a contraction (resp., isometry). We say that the pair (T,p) is a

contractive (resp., isometric) covariant representation of the pair (21, a) if Tp(x) =

p(a(x))T holds for all x G 21.
Observe that, if 21 is unital, there is a one-to-one correspondence between con-

tractive representations of /1(Z+, 21, a) and contractive covariant representations of

(21, a) given by n ^ (T,p) if and only if p(x) = U(80 ® x), and T = U(6i ® 1). (If
21 is nonunital, T can be obtained by passing to the multiplier algebra.) Note that

p is a contractive representation of 21, hence a '-representation. If n corresponds

to (T, p), we will write II = Txp. Then

(Txp)  ^{„..„   =£>(-v)r\
\n>0 J        n>0

Obviously, contractive representations of .1(Z+,2l,a) can be extended to repre-

sentations of the enveloping algebra Z+ xQ 21. We will not make a notational

distinction between representations of Z1(Z+, 21, a) and those of Z+ xQ 21.
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11.3. PROPOSITION. Let CI be the class of all isometric covariant representa-

tions of (21, a). If F G Z+ xQ a, then

\\F\\=    sup    \\(V x p)(F)\\.
(V,p)eci

PROOF. Since CI is a subclass of the class of all contractive covariant represen-

tations, the right-hand side is clearly less than or equal to the left-hand side. To

complete the proof, it is enough to show that any contractive covariant representa-

tion (T, p) of (21, a) can be dilated to an isometric covariant representation.

Thus, let (T,p) be a contractive covariant representation of (21, a) on a Hilbert

space M, and let V be the minimal isometric dilation of T, as in [6], on the Hilbert

space H2(U) consisting of sequences (6, 6,---)> 6 G X, En>o II6II2 < °°- ^ 's

given by K(£0, 4"i, • • •) = (TfaDrfati,...), where DT = (h-T*T)l¡2. Define
the representation p of 21 on H2{M) by

p(x)(Ço, 6,6, • ■ •) = (p(x)£o,P(a^1x)^i,p(a~2x)Í2, ■ ■ •)•

We claim that (V, p) is an isometric covariant representation of (21, a). Now p(ax)T

= Tp(x) for all x G 21 implies T*p(ax) = p(x)T*. So p(x)T*T = T* p(ax)T =

T*Tp(x), and hence p(x) commutes with D\ and Dt as well. We compute

p(ax)(ío, 6, 6, • • •) = p(ocx)(T£o,Dt(,o, 6,6, • • •)

= (p(ax)T^,p(x)DT^p(a~1x)iu ■ ■ •)

= (Tp{x)to, DTp(x)^o,p(a-1x)^,...)

= V(p(x)C0,p(a-lx)^i,...) = Vp(*)(6, 6, • ■ •)•

This proves the claim. Thus (V,p) is the desired dilation of (T,p).    D

11.4. COROLLARY. Writing the unilateral shift on H2(){) as multiplication by

z,Mz, we conclude ||F|| = sup ||M2 x p(F)||, F_Z+xa 21, where the supremum is

taken over all representations (p,M) o/2l.

11.5. Notation. If p is a representation of a C*-algebra 21 on a Hilbert space )l

we will denote by p the representation of 21 on H2(H) as constructed in the above

proof.

11.6. Let S be a locally compact Hausdorff space, and <f>: S —> S a homeo-

morphism. Let 21 be the C*-algebra of continuous functions from S into Mn(C)

(complex N by N matrices) which vanish at infinity, and a the automorphism of

21 given by a(/) = / o <p. Denote by ns the representation ns(/) = /(s), / G 21.

We can consider Us (s G S) as acting on a fixed TV-dimensional Hilbert space J/jy

PROPOSITION.   For F G Z+ xQ 21, ||F|| = sup3GS \\M2 x fta(F)||.

PROOF. This follows from [8, Propositions II.7 and II.8] in case _V = 1, but

with a suitable change of notation the same proof is, in fact, valid for any positive

integer N.

III. Semicrossed products of finite-dimensional C*-algebras. Let A(D)

denote the disk algebra, i.e., the commutative Banach algebra of continuous func-

tions on the closed unit disk D, which are holomorphic in the interior. Fix a

positive integer K, and let 23 k be the algebra of all K by K matrices of func-

tions [/¿y]o<t,¿<J--i, fij £ A(D) and of the form fZJ(z) = X_.n>oa"'')'zl+nK', where
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0 < I < K — 1 and I = i — j (mod K). There are various (equivalent) norms under

which Bk is a Banach algebra. We describe one such norm.

Let H2 refer to the classical Hardy space of holomorphic functions £(z) —

z_-n>o 6iZn m the- unit disk having nontangential L2 boundary values with inner

product

(6»?) = ¿/      ttz)ñ(z)dz       (6r/Gi/2).
27r J\z\ = l

Let H2 (0 < j < K - 1) denote the subspace of functions of the form £(z) =

__-n>o ̂ j+nK^+nK■ The subspaces H?, H2 are orthogonal if j ^ k, j, k G {0,1,2,

..., K-l). Now a matrix [/¿J] G Bk maps a vector \(,°(z), £l(z),..., ÍK~l(z)} G

ef-To1 H2 to a vector hf(z),nl(z),.. .,rfK~l(z)\ G ©J^1 fl? by means of

_=o

The norm of Sk is defined as the operator norm associated with this representation.

Consider the algebra Bk ® M¿v(C). An element in Bk ® M\/(C) may be considered

as an operator on the Hilbert space (0,-Tq Hj) ® CN. Define the norm on

Bk®Mn(C) to be the operator norm associated with this representation. If K > 1

or N > 1, Bk ® Mjv(C) is a noncommutative nonselfadjoint operator algebra.

Si ® Mi(C) = A(D) [8]. The maximal ideals of Bk are of codimension 1 or K2.

Those of codimension one are kernels of the representations F = [flj] —> /fcfc(0),

for 0 < k < K — 1. Those of codimension K2 are kernels of the representations

F = [fl3)^\fl3(\)),fov\eñ, A^0[8],

III. 1. LEMMA. For even/ positive integers K and N, the maximal modular

ideals in Bk ® M^(C) are of the form M ® Mn(C), where M C Bk is a maximal

modular ideal.

Proof. Cf. [2].   d

111.2. PROPOSITION. Let K and N be positive integers, and a = KMN(C) be

K copies of Mn(C). Let a G Aut(a) be given by

a(A0,Ai,...,AK-i) = (AK-i,Ao,...,AK-2),

then Z+ xa a is isomorphic to Bk ® Mjv(C).

PROOF. The proof for TV = 1 is given in [8, III.2]. The general case is analo-

gous.    D

111.3. COROLLARY.   Let a = KMN(C) as above, a G Aut(a) such that

a(A0,Ai,...,AK-i) = (AK-i,Ao,...,AK-2);

then the semicrossed product Z+ xa a is strongly semisimple.

111.4. PROPOSITION. Let a be a C*-algebra with identity, a,ß G Aut(a) such

that ct(A) = Ad(U)ß(A), for some unitary U G a. Then Z+ xa a is isomorphic to

z+x^a.
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PROOF. Define ip: /1(Z+,a,Q)^/1(Z+,a,/3) by

tf  I  E 6n ® An )= E ^ ® ¿n«""1^) " ' " Û^)^
\n>0 J n>0

it is a straightforward though tedious computation to show than ip is an isomor-

phism. Hence the enveloping algebras Z+ xQ a and Z+x^2l are isomorphic.    D

111.5. PROPOSITION. Let a = KMN(C), and a G Aut(a) any automorphism

which acts transitively on the factors. Then Z+ xaa is isomorphic to Bk®Mjv(C).

PROOF. Let a = (BfJo1*}' a. - Mzv(C) , 0 < j < K- 1. Without loss
of generality we may arrange the factors so that a($ij) = aj + i (mod K). Let

er: a —> a be the automorphism o~(Aq,Ai,...,Ak-i) = (Ak-i, An,..., Ak-2)-

Now tr_1 o a\%lj maps a¿ onto a^, hence there exists a unitary Uj G a^ such that

o-1 oa|SLf(Af) =Ad(t/J)Ai. Thus

a(An, Ai,..., Ak-i) = (Ad(C/K-i)AK-i, Ad(/J0)Ao,..., Ad(t/K-2)AK-2)-

Therefore, if U = ©f^1 Í7,, it follows that a(A) = er(Ad(c7)A), A G a. Hence

a(A) = Ad(W)o(A), W = a(U). This implies that Z+ xa a is isomorphic to

Z+ XQ a by III.4. But by Proposition III.2 we have that Z+ xa a is isomorphic to

Bk ® Mjv(C). The result follows.    D

111.6. COROLLARY. Let a = KMN(C), and a G Aut(a) any automorphism

which acts transitively on the factors. Then the semicrossed product Z+ xa a is

strongly semisimple.

111.7. PROPOSITION. Let a fte an arbitrary finite-dimensional C*-algebra, and

a G Aut(a). Decompose a = ©!J=1 a¿, itz/iere eae/i a^ = KjMn^C), a(QLj) = a.,,

and a acis transitively on the direct summands of&j. Then Z+ xa a ¿s isomorphic

to%=iBK]®MNj(C).

PROOF. Let a3- = a\%, and ^2n>06n ®n^£ 'H2"^,21,0), witn

„A = („Ai,nA2,...,„A-) G a,        nAj G 21,.

Define ̂ : ^(Z+.a.a) -» ©J=1 i1^*, %,<*,) by

tf    E ¿" ® "A    =     E ô" ® nAl' • • • ' E é" ® "Ar    ■

t/z extends to an isometric isomorphism Z+ xQ a —» ®^=1 Z+ xa. %j.

111.8. In what follows, the space of all maximal modular ideals in a Banach

algebra, endowed with the hull-kernel topology, will be called the strong structure

space [9]. We omit the proof of the following

LEMMA. Let a be a Banach algebra, with a = 0¿=1 a¿, r < oo, where a¿ is a

Banach algebra i = 1,2,..., r. Then the strong structure space of a is the disjoint

union of the strong structure spaces of the a¿.

111.9. Recall the Rudin (hull-kernel) topology on D = {z G C: \z\ < 1} deter-

mined by the algebra A(D).  The closed sets V C D in this topology are of the
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following form:

(i) V fi D is either finite or countable; if V l~l D is countable, say {Ai, A2,.. ■},

tnen X-^LiU - |A„|) < co.
(ii) V nöD is a closed subset (in the usual topology of 3D) of Lebesgue measure

zero, and contains every accumulation point of V HD [3, p. 89].

Let K and N be positive integers, and let M and M be the strong structure

spaces of Bk <8 A-_v(C) and Bk, respectively. Then M and M are homeomorphic.

The topology on M is given as follows: Set S = {.n, si, • • •, s/t-i} and define an

equivalence relation on S x D, where D is endowed with the Rudin topology, by

(.,A)~(.',A')if
(i) s = s' and A = A' = 0, or

(ii) |A| = |A'|^ 0 and (X'/X)K = 1.
Then M = S x D/ ~ with the quotient topology [8].

LEMMA. For every positive integer K, the strong structure space of Bk is con-

nected.

PROOF. Suppose M = U U V, with U, V open, and U H V = 0. Let U0 =
U\(S x {0}), Vb = V\(S x {0}); since {0} C D is closed in the Rudin topology,

S x {0} is closed in 5 x D\ ~, and so C/q. and Vn are open. Furthermore, if U,V

are nonempty, so are Uc¡, Vn- Let p:SxD->Sx D\ ~ be the quotient map. Then

p~y(Uo) = SxUi and p-1(Vb) = S x Vi where f/i, Vi are open sets in D\{0}. Now

0 = p-^t/onv0) = p-l(Uo)np-^Vb) = (S x i/o n (5 x yx) = s x (tf.nVi).

Hence, Uj. D Vi =0. Also,

5 x (D\{0}) - p-HUoUVo) = p-1(U0)Up-1(V0)

= (SxUi)ö(SxVi) = Sx (U1UV1).

Therefore, U1ÖV1 — D\{0} which implies that D\{0} is disconnected in the Rudin

topology. But this topology is coarser than the Euclidean topology on D\{0}. So

the above contradicts the fact that D\{0} is connected in the Euclidean topology.

Hence M is connected.    D

111.10. COROLLARY. For all positive integers K and N, the strong structure

space of Bk ® Mn(C) is connected.

111.11. LEMMA. For all positive integers K and N, the only central idempotents

of Bk ® Mjv(C) are 0 and 1.

PROOF. Let Ex:Bk ® MN(C) -> MKn(C),X G D,A ^ 0, be the evalua-

tions E\(F) = F(X), and F G Bk <8 Mjv(C) a central idempotent. Since E\ is

a homomorphism onto, it follows that F(X) is in the center of Mkjv(C). Hence,

F(X) = w\I, where / is the identity, and w\ G C. Also, since F is idempotent,

w\ = 0 or w\ = 1. This induces a continuous mapping w: D\{0} —► {0,1}. Hence,

since D\{0} is connected, this implies w\ = 0 or w\ — 1 for every A G D, A 7^ 0.

So that F(X) = 0 or F(X) = I for every A G D, A ̂  0. Since the elements of F

are continuous in D, it follows that F(X) — 0 or F(X) = I for A G D, and therefore

F = 0 or F = I.    D
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111.12. THEOREM. Let a and 03 be finite-dimensional C* -algebras, a G Aut(a),
ß G Aut(03). Decompose a = ©¿=1 a.,-,03 = ®-=153., zzz/iere eac/i % =i

J^M^C),»* = üíí2fJví(C)1a(ai) = a,,/.^) = Bi, 1 < j < r, 1 < i < s,
and a and ß act transitively on the direct summands of %j and 03i, respectively.

Then Z+ xQ a is isomorphic to Z+ Xß*B if and only if r = s, Nj = N^,-y

Kj — K'„tj\ for some permutation a of {1,2,...,r}.

PROOF.    If r = s,  Nj  =  N'^,,,, K3  —  K'a,-^ for some permutation a of

{1,2,... ,r}, then Z+ xa a is isomorphic to Z+ Xß 03 by Proposition III.7.

Conversely, if Z+ xQ a =* Z+ x0 03 then by Theorem III.7

r s

0 Bk, ® MNj (C) = 0 BK> ® MN< (C).
_=i ¿=i

Lemma III.8 and Corollary III. 10 imply r = s. So we have

r r

V = 0 8k, ® Mat, (C) s 0 ßK; ® M^ (C) = D'.
3=1 1=1

Let i/> be an isomorphism between D and V. Consider Bk, ® A_V(C) C £>; this

is an ideal in D, and therefore its image under tb is an ideal in D', and we may

write ip(BKj ® MNj(C)) = ®2r=1 J», Ji C Bk< ® Mjv^C), J¿ is an ideal, i.e.,

Bkj ® MNj(C) = ©¿=1 Ji- This implies [4, p. 135] that there exist e¿ G Bk¡ ®

Af/Vj(C), 1 < i < r, orthogonal central idempotents such that X_¿=ie¿ = 1, and

cí(Bkj ® Mjy,- (C)) = J¿, i = 1,2,..., r. But by Lemma III.11 the only orthogonal

central idempotents in Bk, ® MjfAC) are 0 and 1. Hence,

BKl ® MNj(C) =i JaU) ç BK>,., ® MN,    (C).

Now the maximal modular ideals in Bk, <8>M^ (C) have codimension Nj or KjNj.

If M C do-Í7l is a maximal modular ideal, there exists M' ® Mm- (C) a maximal

modular ideal in BK> ® Mzy . (C) such that M = J^) n (M1 ® MN> (C)),

with M' c S/f'     a maximal modular ideal. Therefore,
"U)

Ja(3)/M = J^/lJrU) n (M1 ® Mrç0)(C))]

S£[Sjc' ,®Mjv- ..(C)]/[M'®Mj» ..(C)]

by the Second Isomorphism Theorem. Hence, M has codimension N'2,--. or

2f3i)-V3~. This implies Kj = 2f£,-, and Nj = NL-y Repeating this process

for every j = 1,2,... ,r, we get the desired result.    D

III. 13. COROLLARY. Let a and 03 be finite-dimensional C*-algebras, a G
Aut(a),/3 G Aut(ÍB). Then Z+ xQa is isomorphic to Z+ x^OS if and only if there
is an isomorphism ip: a —> 03, and a unitary U G 03 suca í/iaí ßotp = Ad(U)(ipoa).

PROOF. If Z+ xa a =_ Z+ Xß 03 then by Theorem III.7

r s

0 Bk, ® Mjv,.(C) = Z+ xa a = Z+ X/3 !B - 0 Sk< ® Mj^C),
_=i ¿=i
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so by Theorem III. 12, r = s, Kj = K'a,.y Nj — N'a,_-, for a some permutation of

{1,2,..., r}. Thus, there exist isomorphisms u: a —> ©v=1 Dj and v: 03 —► ©j=1 ^

with Pj = KjMjy.(C), and a and /3 act transitively on the direct summands of Dj]

that is, there exist unitaries 14, G Mat.(C), j = 1,2,... ,r; i — 0,1,... ,Kj — 1, such

that [tio^K«"^-) = Ad(V)(uoa) where V = Vbi©Vn© • • ■®Vk1-i,i®V02®Vi2®

•■■ffiVK-_i,2©Vor©Vir© •■■©Vji--i,r- Let l7 = îz_1(V) G 03, and xp - v~l ou;

then U is unitary and xp is an isomorphism. It follows that ßoxp =Ad(U)(xp o a).

The converse follows easily from III.4.

Whenever a and 03 are commutative, K3 = 1 in Theorem III.7. In this case

Z+ xQa = Z+ x^ 03 if and only if there exists an isomorphism xp: a —► 03 , such

that ß o xp = xp o a.

III. 14. COROLLARY. Let a be a finite-dimensional C-algebra, a G Aut(a).

Then Z+ xa a is strongly semisimple.

III.151. EXAMPLE. Isomorphism of C*-crossed products Z+ xQ a, and Z x^ 03

does not imply that a and 23 are isomorphic. Take a = C2, and a G Aut(a),

ol(zi,Z2) = (z2,zi). 03 = AÍ2(C), ß the identity automorphism; then both Zxa2l

and Z Xß 03 are isomorphic to C(T) ® M2(C).

References

1. W. Arveson and K. Josephson, Operator algebras and measure preserving automorphisms, J. Funct.

Anal. 2 (1969), 100-134.

2. B. R. Gelbaum,  Tensor products of Banach algebras. II, Proc. Amer. Math. Soc. 25 (1970),

470-474.

3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.

4. T. W. Hungerford, Algebra, Holt, Rinehart and Winston, New York, 1974.

5. M. McAsey and P. Muhly, Representations of non-self-adjoint crossed products, Preprint.

6. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Am-

sterdam, 1970.

7. G. Pedersen, C* -algebras and their automorphism groups, Academic Press, London, 1979.

8. J. Peters, Semi-crossed products of C* -algebras, J. Funct. Anal. 59 (1984), 498-534.

9. C. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N.J., 1960.

Department of Mathematics, Iowa State University, Ames, Iowa 50011 (Current
address of J. R. Peters)

Current address (L. M. DeAlba): Department of Mathematics, Drake University, Des Moines,

Iowa 50311


