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CONFORMAL INVARIANTS OF MINKOWSKI SPACE

JACK MORA VA

Abstract. The conformai invariant defined for compact Riemannian manifolds by

Yamabe is generalized to pseudo-Riemannian manifolds and is shown to be nontriv-

ial for Minkowski space. We also make some elementary remarks about generaliza-

tions of Yamabe's equation to sections of vector bundles, as have been studied by

physicists concerned with Goldstone bosons and the Higgs mechanism.

... But I will try to show you by means of geometrical proofs... that, of the numbers named by me and

given in the work which I sent to [my funding agency], some exceed not only the number of the mass of

sand equal in magnitude to the earth filled up in the way described, but also that of a mass equal in

magnitude to the universe...

Archimedes, the Sandreckoner

If (X, g) is a compact Riemannian manifold of dimension at least three, then the

infimum of the set

-^ + \v^\R{s))b^ b^L\(X,vol),\\b\\ = \

of real numbers, || • || denoting the Lebesgue 2n/(n — 2)-norm, is a remarkable

invariant of the conformai diffeomorphism class of (X, g), cf. [20]. As an example,

we cite

Proposition 1. When (X, g) is the usual n-sphere, the infimum defined above has

the value

\n(n-2)oP-J"

(e.g. y77 • 61/2 when n = 4) where un is the area of the unit sphere in R" + 1.

See [2] for the proof.

Note that there is a natural embedding

L>(X,*Ag)-+L<(X,v<A8)

of Sobolev spaces if r — np~l 3* s — nq~l  [7],  e.g.  if p = 2,  r = 1, s = 0,  and

q < 2n/(n — 2); so the definition above makes sense.

More generally, any critical value of the quadratic form

b~(Ygb,b),        Yg=-Ag+\^R(g)

on the unit sphere in the Lebesgue space L2"/{"~2)(X, vol_) is a conformai invariant,

provided that b is understood as a section of the line bundle of densities of

conformai weight \n — 1. (We use the normalization convention of physics, in which
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densities <b of weight w have norm

.1 w/n

/ \*r
defined without reference to any Riemannian metric.)

The purpose of this note is to draw attention to this conformai spectrum of critical

values of Y on the unit sphere in the space of (kn - l)-densities, as a substitute for

the lack of any conformally natural Hilbert space representation of Yg, and to show

by calculation that such invariants can be defined more generally, e.g. for manifolds

noncompact or pseudo-Riemannian or both. Note that a real critical point1 of the

Yamabe functional can be interpreted to be a conformai deformation of g to

g = \b\4/("~2)g such that volf is a probability measure and R(g) is almost certainly

constant.

I am indebted to Tom Branson for drawing my attention to classical Euclidean

space:

Proposition 2. The conformai spectrum of R" is nonempty and, in particular,

contains \n(n — 2)u2/,n.

Proof. The problem of extremizing the Dirichlet form on the unit sphere in

L2n/("~2)(R") leads to the Lagrange multiplier functional

t,b~(-Ab,b) + t{\\btA"-2)-l),

with critical points verifying

-Ab+(tn/(n - 2))\bfA"~2)b = 0,        \\b\\ = 1;

but it is well known that b0(x) = (1 + ||x||2)^("~2) satisfies

-A/30 + n(n- 2)/3¿" + 2)/<"-2) = 0

(cf. [15] for some related examples), and it is easy to calculate that

W2"/(""2)= \B(\n,\n)o>n_x,    with«,.. = 2^"/T(\n),

where B is Euler's beta-function. The assertion then follows from the duplication

formula for the gamma function, and rescaling.

For pseudo-Riemannian manifolds of hyperbolic signature we write Dg to denote

the Laplace-Beltrami operator; in this notation our main result is then

Proposition 3. The set of critical values of an appropriate closure of the densely

defined quadratic form b *-* (Ob, b) restricted to the unit sphere in the Lebesgue

space L2"A"~2) of Minkowski space is nonempty, and in particular contains

(\n - l)2(irun_x)>" e.g. (2tr3y when n = 4.

Proof. As in the preceding proposition it will be enough to exhibit a critical point

associated to the above critical value; it will turn out that this kind of critical point is

well known in other contexts, as we will see below. Taking the domain of the form to

'Critical points correspond to conformai "vacuum states", of N. D. Birrell and P. C. W. Davies,

Quantum fields in curved space-time, Cambridge University Press, 1982.
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consist of those elements of L2nÁ"~2)(R") for which the Dirichlet integral / |dz3|2 vol

is finite (i.e. calculated with respect to the usual Euclidean metric, cf. the homoge-

neous Sobolev theorem of [14]), an elementary computation completes the argument:

Lemma. There is a smooth, nowhere-vanishing real-valued solution u to the nonlinear

Klein-Gordon equation

Du-(n- 2)V"+2>/<"-2) = 0

on Minkowski space, with u of Lebesgue class /_2«/("-2)_

Proof.  Let v = t + r, w = t - r, with z*2 = x2 + y2 + z2, be advanced and

retarded coordinates; then u = [(1 + zj2)(l + w2)]~s("_2> is such a solution, with

m    ,|2«/(»-2)

the proposition above follows immediately by rescaling. Indeed, in advanced and

retarded coordinates we can write the wave operator as

d2u 2(n — 2) I du        du
Du = 4-_

ovow v — w    \ av       aw I

and the assertion that w is a solution follows immediately. Now

\v - w|""2

[(1 + v2)(l + w2)}>"

2«/(»-2) r \v - w\"   :
«II = 2   co„_2l —— dv dw

.R2

can be evaluated as

T-1-2Í:    Z<+ \  i = k , >

where n = 2k + 2. Using the duplication formula, this sum becomes

y r(z + i/2)r(fe - z + 1/2),

"-\to     T(i + l)T(k - i + 1)     '

the assertion that the sum over gamma-functions equals tt is equivalent to the

identity

»»-»-(vhTivK1*-?,-1:
which can be verified by noting that the function

?(*)=   I (2krl W=l/2((l-4x)-'-l)
k = 1v     K     '

satisfies the equation

g(x)2 + g(x) = x(l - Ax)-1 =   Z22k-2xk.       D

A = l

These functions become familiar in more traditional coordinates; following Penrose

[18] via Hawking and Ellis, we can write

t = Arctan v + Arctanw,       p = Arctan v - Arctanw,
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so that the quadratic differential

ds2E(r,p,0,<p) = dr2 - dp2 - sin2 P(d02 + sin2 6d<p2)

of Einstein's static universe (as parametrized in [12, §5.1]) takes the form

u(r, t)2[dt2 - dr2 - r2(d<b2 + sin2 6 d<b2)] = u2(r, t) d^inkowskl(/, r, 6, <f>)

in Minkowski space. Similarly, in the anti-de Sitter universe [12, §5.2] the quadratic

differential is

ds2(r,x,0,<b) = cosh2xdr2 - dx2 - sinh2 x(d02 + sin2 8d<b2)

= cosh2x dsj:(r, p, 6, $),

with x = 2 Arctan exp p - {-n; hence ds^r, x, 6, <¡>) = <ï»i ds^^^^t, r, 6, <b) with

<_>_ = 2coshx • cos(\-(t + p))cos(\(r - p)) = 2(1 - <*>2)~\

while in the de Sitter universe we have

ds2+(x, P,0,<t>) = dx2 - cosh2x[dp2 + sin2p(dö2 + sin2 9deb2)]

= ^lds2Minkomia(t,r,e,4,),

with

<_> + = 2(1 + (x)2)"1,        t = 2Arctanexpx - \ir,

denoting by (x)2 = t2 — r2 the Minkowski distance function. It is easy to check that

<_» ± are solutions to Yamabe's equation, in appropriate domains; but ||<_> +|| = oo.

Similarly, the Robertson-Walker, or"Friedmon", metrics[11] ds2 = dt2 - S(t)2 do2,

in which S2 = S1 ■ (S0 - S), are conformally diffeomorphic, via the map

(/, xx, x2, x3) i-» (t(i), xx,x2, x3),       t = S1,

to suitable subuniverses of the static universe, which thus plays a role analogous to

the upper half-plane, cf. [12, §5.3].

A very clear account of the solution to Yamabe's problem used in Proposition 3

can be found in §3.7 of B. (//rsted's paper [17]; see also [19]. It may also be worth

remarking, because of the problem of infrared divergences, that the function studied

in Proposition 2 is not in L2 if n is less than five; nor is the function u of the lemma,

cf. [8].

Now equations much like Yamabe's but complexified seem to be of great interest

to physicists interested in symmetry-breaking, cf. in particular [10], or more gener-

ally [1, 5, 6, 9, 16, 21,...]; though it is often difficult to tell what is true in dimension

four and what is true in all dimensions. As a concluding unscientific postscript, note

that if <b = be'e with b in L\(X, vol_; R) and 6 in L\/A(X, volg; R), then the

expression

/[|d/3|2 + è2|do|2]dvol

(which is just the Dirichlet form of <b if both b and 6 are smooth) is at least finite,

which suggests that critical points of the Yamabe functional be sought among
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solutions of the Euler equations

(i) |det gr^ldet gl1/^2^),, = 0,

(ii) (D _ + i((n - 2)/(n - l))R(g) + \d6\2g + constant \b\4/("~2))b = 0.

With g = \b\A/{"~2)g equation (ii) can be rewritten

(ii*) R(g) = constant - 4((« - l)/(zz - 2))|d_'|2 almost everywhere w.r.t. g,

and equation (i) becomes

(i*)Dfö = Oa.e.

A good example is

4>(x0,...,x„.i) = e,kx«b(x1,...,xn_l);

the Sobolev theorems then lead to strong existence for the Helmholtz equation

[-A„_, + k2 + constant • \b\4/("-2)]b = 0,

cf. [3, 13]. But although this solution has finite energy density, it is not in

L2"/(""2)(R"). For similar reasons, zero cannot be in the conformai spectrum of

Minkowski space.
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