REMARK ON THE GENERALIZED PUTNAM-FUGLEDE THEOREM

TAKASHI YOSHINO

ABSTRACT. If A^* is M-hyponormal, B is dominant, and if CA = BC, then $CA^* = B^*C$.

Let \mathscr{H} be a Hilbert space. An operator $A \in \mathscr{B}(\mathscr{H})$ is dominant if range $(A - \lambda I)$ \subset range $(A - \lambda I)^*$ for all $\lambda \in \sigma(A)$, or, equivalently, for all $\lambda \in \mathbb{C}$ because

$$range(A - \lambda I) = range(A - \lambda I)^* = \mathcal{H}$$

for $\lambda \notin \sigma(A)$. By the result of Douglas [1], it is equivalent to the existence of a real number M_{λ} for each $\lambda \in \mathbb{C}$ such that

$$||(A - \lambda I)^* x|| \leq M_{\lambda} ||(A - \lambda I) x||$$

for all $x \in \mathcal{H}$. If there is a constant M such that $M_{\lambda} \leq M$ for all $\lambda \in \mathbb{C}$, A is called M-hyponormal, and if M = 1, A is hyponormal.

Stampfli and Wadhwa [5] showed that if $A^* \in \mathcal{B}(\mathcal{H})$ is hyponormal, $B \in \mathcal{B}(\mathcal{H})$ is dominant, $C \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ is injective and has dense range, and if CA = BC, then A and B are normal.

Radjabalipour [3] improved this result by allowing A^* to be M-hyponormal. Of course, the condition that A and B are normal allows one to conclude immediately by the usual Putnam-Fuglede theorem that $CA^* = B^*C$.

Moore, Rogers and Trent [2] showed that, if A^* and B are both M-hyponormal, the conclusion $CA^* = B^*C$ can be reached with no restrictions on C at all.

We show that this result can also be improved by allowing B to be dominant.

We need the following two lemmas:

Lemma 1 [4]. Let A be dominant and let \mathcal{M} be an invariant subspace of A for which $A|\mathcal{M}$ is normal. Then \mathcal{M} reduces A.

LEMMA 2. The restriction $A|\mathcal{M}$ of the dominant (respectively, M-hyponormal) operator A on \mathcal{H} to an invariant subspace \mathcal{M} of A is dominant (respectively, M-hyponormal).

PROOF. Let $P_{\mathscr{M}}$ be the orthogonal projection from \mathscr{H} to \mathscr{M} . Then

$$\|(A|\mathcal{M} - \lambda I)^* x\| = \|P_{\mathcal{M}} (A - \lambda I)^* x\| \le \|(A - \lambda I)^* x\|$$

$$\le M_{\lambda} (\text{resp. } M) \|(A - \lambda I) x\| = M_{\lambda} (\text{resp. } M) \|(A|\mathcal{M} - \lambda I) x\|$$

for each $\lambda \in \mathbb{C}$ and all $x \in \mathcal{M}$.

Received by the editors November 26, 1984.

1980 Mathematics Subject Classification. Primary 47B20; Secondary 47B99.

THEOREM. If $A^* \in \mathcal{B}(\mathcal{H})$ is M-hyponormal, $B \in \mathcal{B}(\mathcal{K})$ is dominant, and if CA = BC for $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, then $CA^* = B^*C$.

PROOF. From CA = BC we know that $(\ker C)^{\perp}$ and $(\operatorname{range} C)^{-}$ are invariant subspaces of A^* and B, respectively. Hence $A^*|(\ker C)^{\perp}$ is M-hyponormal and $B|(\operatorname{range} C)^{-}$ is also dominant by Lemma 2. By the decompositions $\mathcal{H} = (\ker C)^{\perp} \oplus (\ker C)$ and $\mathcal{H} = (\operatorname{range} C)^{-} \oplus ((\operatorname{range} C)^{-})^{\perp}$, we have

$$A = \begin{pmatrix} A_1 & 0 \\ * & A_2 \end{pmatrix}, \qquad B = \begin{pmatrix} B_1 & * \\ 0 & B_2 \end{pmatrix}, \qquad C = \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Here $A_1^* = A^* | (\ker C)^{\perp}$ is M-hyponormal, $B_1 = B | (\operatorname{range} C)^{-}$ is dominant and C_1 is injective with dense range. We obtain $C_1 A_1 = B_1 C_1$ from CA = BC. Hence, A_1 and B_1 are normal by [3, Theorem 3(a)] and $C_1 A_1^* = B_1^* C_1$ by the usual Putnam-Fuglede theorem. Then, by Lemma 1, $(\ker C)^{\perp}$ and $(\operatorname{range} C)^{-}$ reduces A^* and B to normal operators, respectively. Therefore, we have

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, \qquad B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}.$$

Hence we obtain $CA^* = B^*C$.

REFERENCES

- 1. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- 2. R. L. Moore, D. D. Rogers and T. T. Trent, A note on intertwining M-hyponormal operators, Proc. Amer. Math. Soc. 83 (1981), 514-516.
- 3. M. Radjabalipour, On majorization and normality of operators, Proc. Amer. Math. Soc. 62 (1977), 105-110.
- 4. J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), 359-365.
 - 5. _____, On dominant operators, Monatsh. Math. 84 (1977), 143-153.

DEPARTMENT OF MATHEMATICS, COLLEGE OF GENERAL EDUCATION, TÔHOKU UNIVERSITY, KAWAUCHI, SENDAI, JAPAN