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CHARACTERIZATIONS OF BAIRE* 1 FUNCTIONS

IN GENERAL SETTINGS

DARWIN E. PEEK

Abstract. Baire* 1 functions from [0,1] to R were defined by R. J. O'Malley. For a

general topological space X, a function /: X -» R will be said to be Baire* 1 if and

only if for every nonempty closed subset H of X, there is an open set U such that

U n H # 0 and f\ H is continuous on V. Several characterizations of Baire* 1

functions are found by altering the well-known Baire 1 characterization: If H is a

nonempty closed subset of the domain of /, then f\ H has a point where f\ H is

continuous. These conditions simply replace "closed subset of the preceding char-

acterization with "subset", "countable subset" or "dense-in-itself subset". The rela-

tionships of these characterizations are examined with the domain of/being various

spaces. The independence of these conditions from the discrete convergence condi-

tion described by Á. Császár and M. Laczkovich is discussed.

1. Introduction. All functions/: X -» R will be from a topological space A into the

set R of real numbers. The mutual relationships of the following conditions (a)-(e)

will be examined. Condition (a) is a generalization of the Baire* 1 condition as

defined by R. J. O'Malley [7, p. 211]. Condition (e) was defined by A. Császár and

M. Laczkovich [2, p. 463].

(a) The function/is Baire* 1, that is, for every nonempty closed subset 77 of X,

there is an open set U such that U n 77 is not empty and f\ 77 is continuous on U.

(b) If 77 is a nonempty subset of X, then f\ 77 has a point where f\ 77 is continuous.

(c) If 77 is a nonempty dense-in-itself subset of X, then f\ 77 has a point where/| 77

is continuous.

(d) If 77 is a nonempty countable subset of X, then f\ 77 has a point where f\ 77 is

continuous.

(e) The function / is the discrete limit of a sequence of continuous functions as

defined by Császár and Laczkovich.

§2 will show that (a)-(c) are equivalent for any domain. The Baire* 1 condition

(a) is shown to imply the "countable" condition (d) in any domain, while the

converse is demonstrated to be false. §3 does give a converse theorem when the

domain is hereditarily separable. §4 discusses the independence of Császár and

Laczkovich's condition (e) from the other conditions.

2. General equivalences to Baire* 1. Theorem 1 and Comment 2 will state the only

implications, one to another, of the preceding conditions where the domain of /is an
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arbitrary space. Example 3 will show that the converse of Comment 2 is false. The

failure of the other implications will be discussed in §§ 4 and 5.

Theorem 1. Suppose f is a function from a topological space X into the set of real

numbers R. The following statements are equivalent:

(a) The function f is Baire* 1.

(b) If H is a nonempty subset of X, then f\ 77 has a point where f\ 77 is continuous.

(c) If 77 is a nonempty dense-in-itself subset of X, then f\ 77 has a point where f\ 77 is

continuous.

Proof. Proof that (a) implies (b). Suppose (a). Suppose (b) is false. There is a

nonempty subset H of X such that /| 77 is discontinuous at each of its points. Since /

is Baire* 1, there is an open set U such that Un Cl(H) # 0 and /|C1(77) is

continuous on U. U contains a point x of 77. Therefore, /|C1(77) is continuous at x.

Therefore, f\ 77 is continuous at x. Contradiction. Therefore, (a) implies (b).

Proof that (b) implies (c). Trivial.

Proof that (c) implies (a). Suppose (c). Suppose (a) is false. Therefore, there is a

closed nonempty subset H of X such that if J is an open set such that 77 D J =£ 0,

then /| 77 n J has a point where /| 77 is not continuous. Let D denote the subset of 77

where f\ 77 is not continuous. If D is not dense-in-itself, then D contains an isolated

point x and f\ D is continuous at x. D is nonempty. Therefore, if D is dense-in-itself,

then /| D has a point x where f\D is continuous. In either case reD. Therefore,/| 77

is not continuous at x. Let F denote an open set containing/(x) such that, if i/is an

open set containing x, then there is a y G U Ci H such that f(y) £ C1(F). There is

an open set W containing x such that if y g W n D then f(y) g V. There is a

z g JF Pi 77 such that/(z) G C1(F). Therefore, zífl. Therefore,/| 77 is continuous

at z. Therefore, there is an open set S containing z such that if j> g 77 n (S n W)

then f(y) G R - C1(F). Therefore, y G D. Therefore, S n W is an open set such

that H n (S n IF) is not empty and /|77 n (S n IF) is continuous. Contradiction.

Therefore, (c) implies (a).

Comment 2. It is now obvious that statement (a) implies statement (d).

The following example shows that the countable condition (d) does not, in

general, imply the Baire* 1 condition (a).

Example 3. Let t denote the countable complement topology on the set 7? of real

numbers. That is, the nonempty open sets of t are the complements of countable

sets. Let A and B denote two totally imperfect (i.e. contain no nonempty perfect

subsets) nonempty subsets of R such that A D B = 0 and A U B = R [5, pp.

201-202]. Let / denote the characteristic function of A on 7?. Suppose 77 is a

nonempty countable subset of R and x G 77. Let U denote (R - H)U {x}. U is

open in t and 77 Pi U = {x}. Therefore, f\77 is continuous at x. Therefore,/satisfies

condition (d). Let K denote a perfect (in the Euclidean topology) subset of 7?. f\K is

totally discontinuous on K. Therefore, / does not satisfy condition (a). Therefore, (d)

does not imply (a) when the domain of /is the countable complement topology.
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3. Hereditarily separable domains. Example 3 demonstrated that the converse of

Comment 2 is not true. When the domain of the function is hereditarily separable

the converse of Comment 2 does, in fact, hold and this will be shown in Theorem 5.

Comment 4. If X is hereditarily separable and Y is a second countable, then X X Y

is hereditarily separable.

Theorem 5. Suppose X is a hereditarily separable space and f is a function from X

into the set of real numbers R. The following two statements are equivalent:

(a) The function f is Baire* 1.

(d) If 77 is a nonempty countable subset of X, then f\ 77 has a point where f\ 77 is

continuous.

Proof. Proof that (a) implies (d). By Theorem 1, (a) implies (b), and (b) implies (d)

here.

Proof that (d) implies (a). Suppose (d). Suppose (a) is false. There is a closed

nonempty subset H of X such that if U is an open set such that 77 fi U # 0, then

f\H n i/has a point where/|77 n f/is not continuous. Let D denote the subset of 77

where/|77 is not continuous. The function f\D is a subset of _f X R. Xis hereditarily

separable and R is second countable. Therefore, by Comment 4, f\ D is separable.

Since /| D is also a function, there is a countable nonempty subset C of D such that

/| C is dense in f\ D and C is dense in D. Since C is countable, f\ C has a point where

/|C is continuous. Since /|C is dense in f\D, f\D must also be continuous at

(x, /(x)). The function/|77 is not continuous at (x, f(x)). Let V denote a neighbor-

hood of f(x) such that if U is an open subset of X containing x, then there is a

y g 77 n U such that f(y) £ C1(F). Let 7 denote an open subset of X containing x

such that if y g D n 7, then/( y) G V. Let z denote an element of H n J such that

f(z) £ Cl(V). R - C1(F) is an open set containing/(z). Since z is not in D, f\H is

continuous at z. There is an open subset W of X containing z such that, if

y g W n 77, then /(y) G R - C1(F). Therefore, if y g (W n 7) n 77 then f(y) g

7? - C1(F) and, consequently, y £ D. Therefore, /|77 is continuous at y. Therefore,

/I H is continuous on the open set IF n 7. Since z G IF n 77 and z G 7 n 77,

(IFn7)n77is nonempty. Therefore, IF n 7 is an open set such that (W n 7) n 77

# 0 and /|(IFn7)n77is continuous. Contradiction. Therefore, / is a Baire* 1

function. Therefore, (d) implies (a).

4. Discrete convergence of sequences of continuous functions. The function /:

X —» 7? is the discrete limit of a sequence of functions {/_} means for every x g X

there exists n0 such that, if n > «0, /(x) = f„(x). The functions f: X -* R are the

equal limit of a sequence of functions {/„} means there is a sequence of positive

numbers (e„} -» 0 such that for every x G X there exists «0 such that, if « > zz0,

then |/(x) -/„(x)| < e„ [2, p. 463]. Császár and Laczkovich [2, p. 471] give an

example in which there are Baire* 1 functions that are not discrete limits of

sequences of continuous functions. In other words, in general, (a) does not imply (e).

The following example shows that, in general, the converse is also not true, as well as

that (e) does not imply (d).
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Example 6. For each rational number p, let f(p) = 1/n where p = m/n and

(m, n) = 1. The function f\Q is totally discontinuous on Q. Therefore, / does not

satisfy (d). Since Comment 2 states that (a) implies (d), / cannot satisfy (a). The

function/is the limit of a sequence {/_} of continuous functions. Q is the union of a

countable sequence {^4,} of singleton sets. For each positive integer i, {f„\A¡}

converges to f\A¡ uniformly. Consequently, by Theorem 5.1 of [3, p. 66], {/„}

converges equally to /. By Theorem 1 of [2, p. 463], / is the discrete limit of a

sequence of continuous functions. Therefore, / satisfies condition (e).

Example 3 shows that (d) does not imply (e) in general. For suppose the function /

defined in Example 3 is the discrete limit of a sequence {/_} of continuous (in the

countable complement topology) functions. There is a positive integer zz such that

B = (x:/_(x) = 1} and C = [x: f„(x) = 0} are both uncountable. Every nonempty

open (in the countable complement topology) set contains points of B and points of

C. Consequently, /„ is totally discontinuous in the countable complement topology.

Contradiction. Therefore, in general, (d) does not imply (e).

Császár and Laczkovich, in Theorem 15 of [2, p. 470], show that (a) implies (e) for

a a-compact, perfectly normal Hausdorff space. Gerlits shows in Theorem 2 of [4, p.

147] the same implication for a subparacompact and perfectly normal Tychonoff

space.

That (e) implies (a) in a complete metric space follows from Theorem 3 of [4, p.

149].

5. Conclusion. Conditions (a)-(c) were shown to be equivalent. Condition (a) was

shown to imply (d). The function in Example 3 satisfies condition (d), but not (a)

and not (e). There are functions in Császár and Laczkovich's example that satisfy

conditions (a) and (d), but not (e). Example 6 defines a function that does not satisfy

(d) and (a), but does satisfy (e). There are three remaining cases involving (a), (d),

and (e). The first case is whether there is a function satisfying (a), (d), and (e). This

case can be settled by letting / be any continuous function. The second case is

whether there is a function that satisfies none of the three conditions (a), (d), or (e).

The characteristic function of Example 3 using the Euclidean topology settles this

question. The last case is unanswered. This case asks whether, in general, "do

conditions (d) and (e) together imply (a)?"
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