PROPERTY (H) IN LEBESGUE-BOCHNER FUNCTION SPACES

BOR-LUH LIN AND PEI-KEE LIN¹

ABSTRACT. We prove that if a Banach space X has the property (HR) and if l_1 is not isomorphic to a subspace of X, then every point on the unit sphere of X is a denting point of the closed unit ball. We also prove that if X has the above property, then $L^p(\mu, X)$, 1 , has the property (H).

1. Introduction. A Banach space is said to have the property (H) [1] (known also as the Radon-Riesz property [10] or the Kadec-Klee property [3]) if every sequence of norm-one elements that converges weakly to a norm-one element converges in norm. M. A. Smith and B. Turett [10] proved that if (Ω, Σ, μ) is a measure space that is not purely atomic and $L^p(\mu, X)$, 1 , has the property (H), then X is strictly convex (R). They posed the following problem:

Question. If X is a strictly convex Banach space with property (H), does $L^p(\mu, X)$, 1 , have property (H)?

The purpose of this paper is to show that the answer to the above question is affirmative when l_1 is not isomorphic to a subspace of X. Let us recall some other definitions.

(G) Every element in the unit sphere is a denting point of the closed unit ball, i.e., if $||x_0|| = 1$ then $x_0 \notin \overline{\text{co}}(M(x_0, \varepsilon))$ for all $\varepsilon > 0$ where $M(x_0, \varepsilon) = \{x \in X : ||x|| \le 1 \text{ and } ||x - x_0|| \ge \varepsilon\}.$

If, for each $\varepsilon > 0$ and $z \in X$ with ||z|| = 1, there exists (MLUR) $\delta(z, \varepsilon) > 0$ such that if x and y are in X with ||x|| = ||y|| = 1 and $||x - y|| \ge \varepsilon$ then $||x + y - 2z|| \ge \delta(z, \varepsilon)$.

The properties (G) and (HR) were introduced by Ky Fan and I. Glicksberg [2]. They proved that (G) implies (HR) and that (G) and (HR) are equivalent when X is reflexive. Midpoint local uniform convexity (MLUR) was introduced by K. W. Anderson (see [10]). It is easy to see that it is equivalent to the following property:

If, for each $\varepsilon > 0$, $0 < \alpha \le \beta < 1$ and $z \in X$ with ||z|| = 1, there exists $\delta(z, \varepsilon, \alpha, \beta) > 0$ such that if x and y are in X with $||x|| \le 1$, $||y|| \le 1$ and $||y - x|| > \varepsilon$ then $||vx + (1 - v)y - z|| > \delta(z, \varepsilon, \alpha, \beta)$ when $\alpha \le v \le \beta$.

Received by the editors December 11, 1984 and, in revised form, February 8, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46B20, 46E40; Secondary 46B22.

Key words and phrases. Property (H), Lebesgue-Bochner function spaces.

¹Research of this author was partially supported by NSF grant DMS-8201635.

It is known that if X has the property (G), then X is (MLUR). On the other hand, M. A. Smith [9] renormed l_1 such that it has the property (HR), but it is not (MLUR). M. I. Kadec [4] used H. P. Rosenthal's l_1 theorem to show that if X has the property (HR) and if X does not contain l_1 , then X is (MLUR). We prove the following two theorems.

THEOREM 1. If X has the property (HR), and if l_1 is not isomorphic to a subspace of X, then X has the property (G).

THEOREM 2. Suppose X has the property (G). Then $L^p(\mu, X)$, 1 , has the property (H).

For more geometrical properties between X and $L^p(\mu, X)$, we suggest the reader consult [6 and 10]. We wish to thank Professor B. Turett for informing us of the paper of Kadec [4].

2. Proof of Theorem 1. We may assume that X is separable. Suppose X does not have the property (G). Then there are x_0 with $\|x_0\| = 1$ and $\varepsilon > 0$ such that $x_0 \in \overline{\text{co}}M(x_0, \varepsilon)$ where $M(x_0, \varepsilon) = \{x \in X: \|x - x_0\| \ge \varepsilon \text{ and } \|x\| \le 1\}$. If x_0 belongs to the weak closure of $M(x_0, \varepsilon)$, since l_1 is not isomorphic to a subspace of X, then there is a sequence (x_n) in $M(x_0, \varepsilon)$ which converges to x_0 weakly [5]. Since X has the property (H), (x_n) converges to x_0 in norm. This contradicts the fact $\|x_n - x_0\| \ge \varepsilon$ for all n. So there exist $\delta > 0$ and f_1, f_2, \ldots, f_n in X^* such that, if $x \in M(x_0, \varepsilon)$, then $f_k(x) < f_k(x_0) - \delta$ for some $k \le n$. Let

$$M_k(x_0, \varepsilon) = \{x : x \in M(x_0, \varepsilon) \text{ and } f_k(x) < f_k(x_0) - \delta \}.$$

If $x_0 \notin \overline{\operatorname{co}}(M_1(x_0, \varepsilon) \cup M_2(x_0, \varepsilon))$, then there exist $\delta' > 0$ and $f \in X^*$ such that if $x \in M_1(x_0, \varepsilon) \cup M_2(x_0, \varepsilon)$ then $f(x) < f(x_0) - \delta'$. Hence, in this case, $M(x_0, \varepsilon) = \bigcup_{i=3}^n M_i(x_0, \varepsilon) \cup M_f(x_0, \varepsilon)$ where $M_f(x_0, \varepsilon) = \{x: x \in M(x_0, \varepsilon), f(x) < f(x_0) - \delta'\}$. So we may assume that

$$x_0 \in \overline{\operatorname{co}} M(x_0, \varepsilon) = \overline{\operatorname{co}} (M_1(x_0, \varepsilon) \cup M_2(x_0, \varepsilon))$$

and there exist sequences (x_n) in $M_1(x_0, \varepsilon)$, (y_n) in $M_2(x_0, \varepsilon)$ and (α_n) with $0 \le \alpha_n \le 1$ such that $\lim_{n \to \infty} \alpha_n x_n + (1 - \alpha_n) y_n = x_0$. Obviously, $0 < \lim \alpha_n < 1$. This contradicts the fact that X is (MLUR). So X has the property (G). Q.E.D.

3. Proof of Theorem 2. Let (f_n) be a norm-one sequence in $L^p(\mu, X)$ which converges weakly to a norm-one element f. Let g be an element in $L^p(\mu, X)^*$ such that g(f) = 1 = ||g||. Then

$$1 \ge \frac{1}{2} \| \|f_n(\cdot)\| + \|f(\cdot)\| \|_{L^p(u)} \ge \frac{1}{2} \|f_n + f\|_{L^p(u, X)} \ge \frac{1}{2} g(f_n + f).$$

Since this last term converges to 1 and $L^p(\mu)$, $1 , is uniformly convex, <math>||f_n(\cdot)||$ converges to $||f(\cdot)||$ in $L^p(\mu)$. By passing to subsequence and perturbing the sequence (f_n) , we may assume that $||f_n(t)|| = ||f(t)||$ for all $n \in \mathbb{N}$ and $t \in \Omega$. Let

$$d(n,k) = \{t: ||f_n(t) - f(t)|| > ||f(t)||/k\}.$$

We claim that if $\lim_{n\to\infty} \int_{d(n,k)} ||f(t)||^p d\mu = 0$ for all $k \in \mathbb{N}$, then (f_n) converges to f in norm. Given $\varepsilon > 0$, there is a $k \in \mathbb{N}$ such that $1/k < \varepsilon/2$. Since $\lim_{n\to\infty} \int_{d(n,k)} ||f(t)||^p d\mu = 0$, there exists N such that, if n > N, then

$$\int_{d(n,k)} \|f(t)\|^p d\mu < \varepsilon^p/4^p.$$

Hence, if n > N, then

$$\int \|f(t) - f_n(t)\|^p d\mu$$

$$= \int_{d(n,k)} \|f(t) - f_n(t)\|^p d\mu + \int_{\Omega - d(n,k)} \|f(t) - f_n(t)\|^p d\mu$$

$$\leq 2^p \int_{d(n,k)} \|f(t)\|^p d\mu + \int_{\Omega - d(n,k)} \|f(t)\|^p / k^p d\mu$$

$$< \frac{\varepsilon^p}{2^p} + \frac{\varepsilon^p}{2^p} < \varepsilon^p.$$

Now, suppose that (f_n) does not converge to f in norm; then there exist $\epsilon > 0$ and $k \in \mathbb{N}$ such that

$$\int_{d(n,k)} \|f(t)\|^p d\mu > \varepsilon \quad \text{for infinitely many } n.$$

By passing to a subsequence, we may assume that

$$\int_{d(n-k)} \|f(t)\|^p d\mu > \varepsilon \quad \text{for all } n.$$

Since (f_n) converges to f weakly, for each $m \in \mathbb{N}$, there is $(a_i^m)_{i=1}^{N_m}$ such that $\sum_{i=1}^{N_m} a_i^m = 1$, $a_i^m \ge 0$ and $\|\sum_{i=1}^{N_m} a_i^m f_i - f\| < 1/m$. By passing to a sequence of $(\sum_{i=1}^{N_m} a_i^m f_i)_{m=1}^{\infty}$, we may assume that $(\sum_{i=1}^{N_m} a_i^m f_i)$ converges to f a.e. Let λ be the probability given by

$$\lambda(A) = \int_A \|f(t)\|^p d\mu \text{ for all } A \in \Sigma.$$

Then $\lambda(d(n, k)) > \varepsilon$. For each m, let

$$S(m) = \left\{ t: \left(\sum_{i=1}^{N_m} a_i^m x_{d(i,k)} \right) (t) > \frac{\varepsilon}{2} \right\}.$$

Since $\int \sum_{i=1}^{N_m} a_i^m x_{d(i,k)}(t) d\lambda > \varepsilon$ and λ is a probability measure, $\lambda(S(m)) > \varepsilon/2$. Let $S = \{t: t \in S(m) \text{ for infinitely many } m\}$. Then $\lambda(S) \neq 0$ and there is $t' \in S$ such that $(\sum_{i=1}^{N_m} a_i^m f_i(t'))_{m=1}^{\infty}$ converges to f(t') in norm. Let $T = \{n: t' \in d(n,k)\}$. If $t' \in S(m)$, then $\sum_{i \in T} a_i^m > \varepsilon/2$ and

$$\begin{split} \sum_{i=1}^{N_m} a_i^m f_i(t') &= \sum_{i \in T} a_i^m f_i(t') + \sum_{i \notin T} a_i^m f_i(t') \\ &= \bigg(\sum_{i \in T} a_i^m\bigg) \bigg(\sum_{i \in T} a_i^m f_i(t') / \sum_{i \in T} a_i^m\bigg) \\ &+ \bigg(\sum_{i \notin T} a_i^m\bigg) \bigg(\sum_{i \notin T} a_i^m f_i(t') / \sum_{i \notin T} a_i^m\bigg). \end{split}$$

Since $||f_i(t') - f(t')|| > ||f(t')||/k$, $||f_i(t')|| = ||f(t')||$ for all $i \in T$ and X has the property (G), there is $\delta > 0$ such that if $x \in \overline{co}\{f_i(t')|i \in T\}$ then $||x - f(t')|| > \delta$. Since $t' \in S(m)$ infinitely often, there exist sequences (x_n) , (y_n) and (α_n) such that $||x_n - f(t')|| > \delta$ for all $n, 1 \ge \alpha_n > \varepsilon/2$ and

$$\lim_{n \to \infty} \alpha_n x_n + (1 - \alpha_n) y_n = f(t').$$

This contradicts the fact that X is (MLUR). So f_n must converge to f in norm. Q.E.D.

4. Since a Banach space X contains a copy of l_1 if and only if $L^p(\mu, X)$, $1 , contains a copy of <math>l_1$ [7], we have the following theorem.

THEOREM 3. If l_1 is not isomorphic to a subspace of X, then the following are equivalent:

- (i) X has the property (HR),
- (ii) X has the property (G),
- (iii) $L^p(\mu, X)$, 1 , has the property (HR),
- (iv) $L^p(\mu, X)$, 1 , has the property (G).

REFERENCES

- 1. M. M. Day, *Normed linear spaces* (3rd ed.), Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York, 1973.
- 2. K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553-568.
- 3. R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
- 4. M. I. Kadec, Relation between some properties of convexity of the unit ball of a Banach space, Functional Anal. Appl. 16 (1982), 204-206.
- 5. E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing l_1 , Israel J. Math. 20 (1975), 375-384.
- 6. J. R. Partington, On nearly uniformly convex Banach spaces, Math. Proc. Cambridge Philos. Soc. 93 (1983), 127-129.
- 7. G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l¹, C. R. Acad. Sci. Paris Sér. A **286** (1978), 747-749.
- 8. H. P. Rosenthal, A characterization of Banach spaces containing l₁, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.
- 9. M. A. Smith, Some examples concerning rotundity in Banach space theory, Math. Ann. 233 (1978), 155-161.
- 10. M. A. Smith and B. Turett, *Rotundity in Lebesgue-Bochner function spaces*, Trans. Amer. Math. Soc. **257** (1980), 105-118.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242