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PROPERTY (H) IN LEBESGUE-BOCHNER FUNCTION SPACES
BOR-LUH LIN AND PEI-KEE LIN'

ABSTRACT. We prove that if a Banach space X has the property (HR) and if /; is not
isomorphic to a subspace of X, then every point on the unit sphere of X is a denting
point of the closed unit ball. We also prove that if X has the above property, then
L?(p, X), 1 < p < o0, has the property (H).

1. Introduction. A Banach space is said to have the property (H) [1] (known also as
the Radon-Riesz property [10] or the Kadec-Klee property [3]) if every sequence of
norm-one elements that converges weakly to a norm-one element converges in norm.
M. A. Smith and B. Turett [10] proved that if (2, =, ) is a measure space that is not
purely atomic and L?(p, X), 1 < p < oo, has the property (H), then X is strictly
convex (R). They posed the following problem:

Question. If X is a strictly convex Banach space with property (H), does L”(u, X),
1 < p < o0, have property (H)?

The purpose of this paper is to show that the answer to the above question is
affirmative when /, is not isomorphic to a subspace of X. Let us recall some other
definitions.

Every element in the unit sphere is a denting point of the

(G) closed unit ball, i.e., if ||x,|| = 1 then x, & co(M(x,, €)) for
all € > 0 where M(x,, €) = {x € X:||x|| < 1 and ||Jx — x,|| =
€}

If, for each ¢ >0 and z € X with ||z|| = 1, there exists
(MLUR) 8(z, €) >0 such that if x and y are in X with ||x|| = ||y]| =1
and ||x — y|| = e then ||x + y — 2z|| = 8(z, ).

The properties (G) and (HR) were introduced by Ky Fan and I. Glicksberg [2].
They proved that (G) implies (HR) and that (G) and (HR) are equivalent when X is
reflexive. Midpoint local uniform convexity (MLUR) was introduced by K. W.
Anderson (see [10]). It is easy to see that it is equivalent to the following property:

If, for each e>0, 0 <a<fB8<1 and z€ X with ||z]| =1, there exists
8(z, &, a, B) > O such that if x and y are in X with ||x|| < 1,||y|| < land|y — x|| > ¢
then|vx + 1 —»)y — z|| > 8(z, &, a, B) whena < v < .

Received by the editors December 11, 1984 and, in revised form, February 8, 1985.
1980 Mathematics Subject Clussification. Primary 46B20, 46E40; Secondary 46B22.
Key words and phrases. Property (H), Lebesgue-Bochner function spaces.

1Research of this author was partially supported by NSF grant DMS-8201635.

©1985 American Mathematical Society
0002-9939,/85 $1.00 + $.25 per page

581



582 BOR-LUH LIN AND PEI-KEE LIN

It is known that if X has the property (G), then X is (MLUR). On the other hand,
M. A. Smith [9] renormed /; such that it has the property (HR), but it is not
(MLUR). M. I. Kadec [4] used H. P. Rosenthal’s /, theorem to show that if X has the
property (HR) and if X does not contain /;, then X is (MLUR). We prove the
following two theorems.

THEOREM 1. If X has the property (HR), and if I, is not isomorphic to a subspace of
X, then X has the property (G).

THEOREM 2. Suppose X has the property (G). Then L?(u, X), 1 < p < o0, has the
property (H).

For more geometrical properties between X and L?(u, X), we suggest the reader
consult [6 and 10]. We wish to thank Professor B. Turett for informing us of the
paper of Kadec [4].

2. Proof of Theorem 1. We may assume that X is separable. Suppose X does not
have the property (G). Then there are x, with ||xo/| =1 and & > 0 such that
X € EM(xO, e) where M(x4,e)={x € X: ||x — x¢|| > ¢ and ||x| < 1}. If x,
belongs to the weak closure of M(x,, €), since /; is not isomorphic to a subspace of
X, then there is a sequence (x,,) in M(x,, €) which converges to x, weakly [5]. Since
X has the property (H), (x,) converges to x, in norm. This contradicts the fact
lx, — x|l = € for all n. So there exist § > 0 and f,, f,,...,f, in X* such that, if
x € M(x,, €), then f,(x) < f,(x,) — 8 for some k < n. Let

M, (xg,€) = {x:x € M(x,, ¢) and f,(x) < f,.(x,) — 8}.

If x, & co(M,(x,, £) U M,(x,, €)), then there exist 8 > 0 and f € X* such that if
x € M(xy, €) U M,(x,, €) then f(x) < f(x,) — &’. Hence, in this case, M(x,, &) =
U3 M(xg, €) U My(x,, €) where M, (x,, ) = {x: x € M(x, #), f(x) < f(x,) —
4’}. So we may assume that

Xo € E61‘4()‘0’ e) = 8(1‘41()60s e) U My(xo, €))

and there exist sequences (x,) in M (x,, €), (¥,) in M,(x,, ¢) and (a,) with
0 < @, <1 such that lim,_, ja,x, + (1 — a,)y, = x,. Obviously, 0 < limea, < 1.
This contradicts the fact that X is (MLUR). So X has the property (G). Q.E.D.

3. Proof of Theorem 2. Let (f,) be a norm-one sequence in L”(p, X) which
converges weakly to a norm-one element f. Let g be an element in L?(pu, X)* such
that g(f) =1 = ||g||. Then

1= HIAON+H IO o = 31U + Fllirge. x> 28(f, + f)-

Since this last term converges to 1 and L?(p), 1 < p < o0, is uniformly convex,
Il £,(-)|| converges to || f(-)|| in L?(un). By passing to subsequence and perturbing the
sequence ( f,), we may assume that || f,(z)|| = || f(¢)| for all» € N and ¢ € Q. Let

a(n, k) = {£:1,(0) = 7O > () k).
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We claim that if lim,_, . [y, 1)/l f()]|? du = 0 for all kK € N, then (f,) converges
to f in norm. Given & > 0, there is a kK € N such that 1/k <e¢/2. Since
lim, _, o [yin iyl F(OII? du = 0, there exists N such that, if n > N, then

[ W du < eryar.
d(n, k)

Hence, if n > N, then
[ @) = 1,01 du
=[ WO =f@N dp+ [ 172 = £, ()] a
d(n, k) Q—d(n, k)

<27f W@ du+ [ (I 7k dp
d(n, k) Q—d(n, k)

Now, suppose that ( f,) does not converge to f in norm; then there exist ¢ > 0 and
k € N such that

f IF ()" dp > e for infinitely many n.
d(n, k)

By passing to a subsequence, we may assume that
f /()] dp > e for all n.
d(n, k)

Since (f,) converges to f weakly, for each m € N, there is (a/)¥» such that
YNeam =1, a”" >0 and |ZVnaf, — f|| < 1/m. By passing to a sequence of
(XNmamf)e_,, we may assume that (XV» a™f,) converges to f a.e. Let A be the

probability given by
M) = [ ()] du foralld e 3.
A
Then A(d(n, k)) > &. For each m, let

S(m) = {t: ( gla;"xd("k))(t) > %}

Since [ENma"x 4, (1) dX\ > e and A is a probability measure, A(S(m)) > /2. Let
S = {t: t € S(m) for infinitely many m}. Then A(S) # 0 and there is ¢’ € S such
that (ZN»a™f,(¢"))%_, converges to f(¢') in norm. Let T = {n: t’ € d(n, k)}. If
t’ € S(m), then ¥, ra" > ¢/2 and

Nm
Yarf(t')= X alfi(¢v)+ X arf(r')

= ieT el
~(Ee) g g

#( Zar)( T arne)s T ar).

i€T i€T i€T
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Since || £,(t") = f()I > I ON/k, DI =1/(2)l for all i € T and X has the
property (G), there is 8 > 0 such that if x € co{ f,(¢")|i € T} then ||x — f(¢')|| > 8.
Since ¢’ € S(m) infinitely often, there exist sequences (x,), (,) and (a,) such that
l|lx, = f(¢)]| > éforalln,1 > a, > ¢/2 and

lim a,x, +(1 - a,)y, = f(¢).

n—oo
This contradicts the fact that X is (MLUR). So f, must converge to f in norm.
Q.E.D.

4. Since a Banach space X contains a copy of /; if and only if L?(u, X),
1 < p < oo, contains a copy of /, [7], we have the following theorem.

THEOREM 3. If I, is not isomorphic to a subspace of X, then the following are
equivalent:

(1) X has the property (HR),

(i1) X has the property (G),

(iii) L?(p, X),1 < p < 0, has the property (HR),

@iv) L?(p, X), 1 < p < o0, has the property (G).
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