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THE TRANSITIVE PROPERTY OF PARALLEL LINES

IS A CHARACTERISTIC PROPERTY

OF REAL STRICTLY CONVEX BANACH SPACES

J. E. VALENTINE

Abstract. In a recent paper Freese and Murphy said a complete, convex, externally

convex metric space has the vertical angle property provided for each four of its

distinct points p, q, r, s, if m is a midpoint of p and q and of r and s. then pr = qs.

In this paper we say a line L is parallel to a line N in such a space provided L and N

contain points p, r, and q, s, respectively, such that the segments S(p,q) and

S(r, s) have a common midpoint m. We further assume that if line L is parallel to

line ¿V and line ¿V is parallel to line R, then L is parallel to R. The main result of this

paper is that such a space is a real strictly convex Banach space. Since real strictly

convex Banach spaces have all of the above properties, the characterization is then

complete.

The problem of characterizing Banach spaces among the class of complete,

convex, externally convex metric spaces has been solved by various authors, see [1, 2,

4, 6 and 7]. (It is well known that a complete, convex, externally convex metric space

contains a (metric) line for each pair of its distinct points, see [3].) The purpose of

this paper is to show that the transitive property of parallelism does this. Of course,

before we can talk about the transitive property of parallel lines, we need some way

of defining what it means to say (metric) lines are parallel in a metric space. The

vertical angle property of Freese and Murphy [5] provides a way.

A metric space has the vertical angle property, VAP, provided for each four of its

distinct points p, q, r, s, if m is a midpoint of p and q and of r and s, then/?r = qs.

Let M be a complete, convex, externally convex metric space with VAP. We will

say a line Lx is parallel to a line L2 provided Lx and L2 contain points p, r and q, s,

respectively, such that the segments S(p, q) and S(r, s) have a common midpoint

m. We will say that a metric space M has the transitive property of parallel lines,

TPPL, provided if Lx is parallel to L2 and L2 is parallel to L3, then L, is parallel to

L3.

Throughout the remainder of this paper, M will denote a complete, convex,

externally convex metric space that has VAP and TPPL. Our first theorem is proved

in [5], but we include a proof here in order to make the paper complete.

Theorem 1. Each two distinct points of M lie on a unique metric line.

Received by the editors September 5, 1984 and, in revised form, February 1, 1985.

1980 Mathematics Subject Classification. Primary 51K05, 51F99.

Key words and phrases. Banach space, convex, externally convex, metric space, strictly convex, transitive

property of parallel lines, vertical angle property.

©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

604



TRANSITIVE PROPERTY OF PARALLEL LINES 605

Proof. As noted above, it is well known that each pair of distinct points of M lie

on at least one metric line. If M contains a pair of distinct points that lie on two

distinct lines, then distinct points/), m, s', q can be found such that m is a midpoint

of p and q and m is a midpoint of p and s'. If a midpoint of m and s' is not between

m and q, let s be that midpoint of m and s' and let r be a midpoint of p and m. It

follows that m is a midpoint of p and g, m is a midpoint of r and s, but /?r ¥= qs,

which contradicts that M has VAP. If every midpoint of m and s' is between m and

g, it is easily seen that a segment S with endpoints m and s' contains a point x

closest to s' that is between m and 9. If s is a midpoint of x and l'onS and if r is a

point betwen p and m such that ms = wr, then we again arrive at the contradiction

that M has VAP.

Theorem 2. // L is a line of M and p is a point of M, p not on L, then M contains a

line N such that p is on N and N is parallel to L.

Proof. Let q and 5 be distinct points on L and let m be the midpoint of p and q.

Now denote by r the point on the line joining m and s such that m is the midpoint of

r and s. By definition, the line N that contains/? and r is parallel to L.

Theorem 3.IfL and N are distinct lines of M and if L is parallel to N, then L and N

have no common points.

Proof. If L is parallel to N, then L and N contain points p, r and q, s,

respectively, such that the segments S(p, q) and S(r, s) have a common midpoint

m. By means contradiction, suppose L and N have a common point x. If y is the

point such that m is the midpoint of x and y, then by VAP, py = xq and xs = ry,

and since x, q, s are collinear, so are r, p, y. Similarly, by VAP, qy = xp and xr = sy

and q, s, y are collinear. This says that L and N have two common points contrary to

the fact that lines are unique, unless m = x. But if m is on L and N it follows that

L = N, contrary to the fact that L and N are distinct.

Corollary I. If L is a line of M and if p is a point of M, p not on L, then there is a

unique line N of M such that p is on N and N is parallel to L.

Proof. By Theorem 2 there is at least one line N that contains p and is parallel to

L. If there were another line N' that contains/; and is parallel to L, then clearly L is

parallel to N' and, by TPPL, N is parallel to N', which contradicts Theorem 3.

Lemma 1. If m is the midpoint ofp and q and of r and s, if mx, m2 are the respective

midpoints of p and r and q and s, and if m3, m4 are the respective midpoints of p and s

and q and r, then m is the midpoint of mx and m2 and ofm3 and m4.

Proof. Let m' be the point of M such that m is the midpoint of m2 and m'. By

VAP, pr = qs, qm2= pm', and m2s = m'r. Since by hypotheses qm2 = m2s = qs/2,

we have pm' = m'r = pr/2. But m is the midpoint of p and r and, consequently, by

Theorem 1, mx = m'. Similarly, m is the midpoint of w3 and m4.

Lemma 2. Let p, q, r be noncollinear points of M, and let p', q', r' be the respective

midpoints of q and r, r and p, and p and q. If s and t are points of M such that q' is the

midpoint of p' and s and r' is the midpoint ofp' and t, then p is the midpoint of s and t.
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Proof. Let p, q, r, p', q', r', s, t denote points which satisfy the conditions of the

lemma. Since q' is the midpoint of p and r and of p' and s, the line h(p, s) is parallel

to the line L(q, r) by definition of parallel lines. Similarly, since r' is the midpoint of

p' and t and of p and q, the line L(p, t) is parallel to L(q, r). Since L(p, s) and

L(/>, t) both contain/) and are parallel to h(q, r) by Corollary 1, L(p, s) = L(p, t)

and since ps = qp' = p'r = tp, it follows that/» is the midpoint of s and /.

We are now ready to complete the characterization by appealing to a result of

Andalafte, Valentine, and Wayment. In [2], they say a metric space has the Median

Bisector Property, MBP, provided Up, q, r is any noncollinear triple of points of the

space and iip', q', r' are the midpoints of q and r, r and p, and p and q, respectively,

then any midpoint t of p and p' is a midpoint of q' and r' and, conversely, any

midpoint of q' and r' is a midpoint of p and p'. They showed that a complete,

convex, externally convex metric space is a real strictly convex Banach space if and

only if it has the MBP.

Theorem 4. The space M has the MBP.

Proof. Let p, q, r, p', q', r', s and t satisfy the conditions of Lemma 2, and let m

denote the midpoint of p and p'. If s* and t* are points of M such that m is the

midpoint of q and s* and of r and t*, then it follows from the VAP that p is the

midpoint of s* and t*, L(s*, t*) is parallel to L(q, r), and consequently from

Corollary 1 that s* = s and t* = t. By Lemma 1, m is the midpoint of q' and r'.

Thus M has the MBP.

Theorem 5. A complete, convex, externally convex metric space is a real, strictly

convex Banach space if and only if it has the VAP and the TPPL.

Proof. Theorem 4 and Theorem 2.1 of [2].
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