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EXTREME POINTS IN CONVEX SETS OF SYMMETRIC MATRICES

BERNARD YCART

Abstract. This paper deals with the following problem: What are the extreme

points of a convex set K of n X n matrices, which is the intersection of the set S„ of

symmetric matrices of nonnegative type, with another convex subset of symmetric

matrices HI In the case where the facial structure of H is known, we expose a

general method to determine the extreme points of K (Theorem 1). Then, we apply

this method to the set of correlation matrices, characterizing its extreme points in

Theorem 2, which is our main theorem. A corollary describes thoroughly the extreme

points of rank 2.

0. Introduction. The problem of determining the extreme points of particular

convex sets of matrices, linked to various problems of optimization, has taken an

increasing importance through the last twenty years, especially in the two directions

of Mathematical Programming (cf. e.g. Berman [6]) and Data Analysis in Statistics.

In the latter some questions are raised about the choice of new metrics satisfying

particular conditions, for Principal Components Analysis (see Croquette [8]).

Those questions can often be reduced to problems of optimization over a convex

set of symmetric matrices of nonnegative type.

We shall denote by Sn the set of « X « symmetric matrices of nonnegative type: Sn

is a convex cone in the vector space of symmetric n X n matrices, identified with

Ri(« + i)/2. S„ and its convex subsets have often been studied (cf. Barker [1], Bastón

[2], Baumert [3 and 4], Hall [10] and Ycart [12]).

We consider a convex subset K of Sn, the intersection of Sn with another convex

subset of R"<" + 1)/2, H, of which the facial structure is supposed to be known. Our

problem is to determine the extreme points of K.

In the first part, we expose a general method based upon simple geometrical and

algebraic tools, that leads principally to a test deciding whether or not a given matrix

in K is an extreme point (Theorem 1). A variant of this method, adapted to convex

cones, had already proved to be successful in the case of those matrices of S„ whose

coefficients are nonnegative (cf. [12]).

In the second part, we apply the method to the set of matrices in S„ whose

diagonal coefficients are all equal to 1. Those matrices are of great interest for both

statisticians and probabilists, as they can be interpreted as correlation matrices of

random vectors in R" (cf. Burington [7]). Theorem 2, which is the main theorem in

this paper, characterizes the extreme points of the convex set oí n X n correlation

matrices. As a corollary, we describe all the extreme points of rank 2.
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1. General method.

1.1. Faces of a convex set. We recall some definitions and elementary properties as

derived from Rockafellar [11].

Definition. A face of a convex set C is a convex subset C of C such that every

closed line segment in C with a relative interior point in C has both end points in

C.

One knows that the collection of all relative interiors of nonempty faces of C is a

partition of C. This fact justifies the following definition:

Definition. Let x be a point in a convex set C. We call face of x relative to C,

noted FC(x), the face of C containing x in its relative interior.

Example, x is an extreme point of C iff FC(x) = {x}.

We shall principally use the following proposition:

Proposition 1. Let A and B be two convex sets in RN, let x be a point in A n B.

The face of x relative to A C\ B is the intersection of the faces of x relative to A and B.

Proof. FA(x) n FB(x) is obviously a face of A n B. As the relative interior of

the intersection of two convex sets in R^ is the intersection of both relative interiors,

if this intersection is not empty, the result follows.

1.2. Faces of S„. The facial structure of S„ is often described in the literature. The

reader will find detailed proofs in [1]. We shall use the following results.

Proposition 2. // X is a matrix in Sn of rank r, then the dimension of FSn( X) is

r(r + l)/2.

Proof. Cf. [1, p. 29, Corollary 3].

Proposition 3. Let X and Y be two matrices of Sn. X and Y have the same face

relative to Sn iff X, Y and X + Y have the same rank.

Proof. By definition, X and Y belong to FS„((X + Y)/2); hence F5„(A') =

FSn(Y) = FSn((X + Y)/2) iff the three matrices have the same rank (cf. [1, Lemma

4, pp. 28-29]).
1.3. Necessary condition. Let us give at once a quasi obvious condition that often

proves to be useful in the searching of extreme points of K = S„ n H.

Proposition 4. If X is an extreme point of K, then

dim¥H(X) < n(n + l)/2 - r(r + l)/2.

Proof. If X is an extreme point of K, its face relative to K has dimension 0. Then

it is sufficient to notice that if A and B are two convex sets of R* having two points

of their relative interiors in common, then

dim A + dim B > N + 1 => dim A C\ B > 1,
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which is a direct consequence of the classical result: let F and G be two subspaces of

a finite-dimensional vector space E. Then dim F + dim G > dim E + 1 implies that

dim F C\G>\.

1.4. Lagrange decomposition. For our study we need an algebraic tool which is a

decomposition of the matrices of Sn.

Let X = (x¡¡y, a nonzero matrix of Sn, let z'0 = Inf{//x, , ¥= 0}, and let A(X) be

the column matrix [x, ,(x¡ ,, )'l/2],j = l,...,n. If /4(A") is the transpose of A(X),

A(X)'A(X) is an « X « matrix of rank 1, the ;0th line of which coincides with the

i0th line of X, the lines of lower index being zero for both A(X)'A(X) and X.

Let <p(X) = X - A(X)'A(X).

Proposition 5. IfXis of rank r, then <p(X) is in Sn, with rank r — 1.

Proof. Immediate.

As a direct consequence of Proposition 5, the iterates <p°(X) = X, <p(X),...,<r/(X)

belong to S„ and tpJ( X) has rank r — 7 if 0 < / _< r.

Let us note that Ax = A(X), Aj = A(<pJ~l(X)), j=l,...,r. This sequence

(Ax,.. .,AJ is well defined and unique for a given X, and we can write X =

¿Zrk = xAj'Aj, ibeAj's being independent.

This decomposition, unique in the sense we have described here, is of course a

matricial version of the classical Lagrange method of decomposition for a quadratic

form (cf. Gantmacher [9, Chapter 10]). It will be referred to from now on as

" Lagrange decomposition of X."

1.5. Necessary and sufficient condition. Let us sum up in a theorem the algorithm of

a test deciding whether or not a given matrix of K is an extreme point of K.

Theorem 1. Let X be a matrix of K = S„ n H of rank r, X = T/j^A/Aj, its

Lagrange decomposition. X is an extreme point of K if and only if, for any matrix Y of

K the three properties,

(i)FH(X)=FH(Y),
(ii) the rank of Y is r,

(iii) if Y — lfj_xBj'Bj is the Lagrange decomposition of Y, then for all j = 1,... ,r,

(Bj, Ax,... ,AJ is a linearly dependent family,

imply, Vj, Bj = Aj.

Proof. A matrix X of K is an extreme point iff any matrix Y, such that

FK(Y)= FK(X), is equal to X.

Thanks to Proposition 1, the only thing to prove is that (ii) and (iii) are equivalent

to FSn(X) = FSn(Y). By Proposition 3, this reduces to prove that (iii) is equivalent

to: the rank of X + Y is r.

We use the following classical lemma, easy to prove by induction.

Lemma. Let Q be a quadratic form, sum of squares of linear forms: Q = f2 +

• - ■ + f2. Then the rank of Q is the rank of the family of linear forms (fx,...,fp).
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Let Qx, Qy and Qx+ Y be the quadratic forms corresponding to the matrices X, Y

and X + Y, respectively.

We have

Qx = f2 +  • • • + f2,fj linear form of matrix A,,

QY = g\ + • ■ • + g2, gj linear form of matrix B-,

Qx+y=fi+  ■■■+fr2 + g2+  ■■■+g2-

The lemma implies that Qx+Y (hence X + Y) has rank r iff, V/, gy is a linear

combination of the/'s; hence the result.

2. Extreme points of the set of correlation matrices. As an application of §1, let K

be the set of n X n symmetric matrices of nonnegative type, whose diagonal

coefficients are all equal to 1. Then H is the affine subspace of R"<«+1>/2 of those

« X n symmetric matrices whose diagonal coefficients are equal to 1, dim H =

n(n + l)/2 - n.

We have VA" e H, FH(X) = H. Then Proposition 6 is an immediate application

of Proposition 4.

Proposition 6. If X is an n X n matrix of K of rank r, the extreme point of K, then

r(r + l)/2 < n.

Example. For n < 5 (resp. 9), the extreme points of K have rank 1 or 2 (resp. 1, 2

or 3).

Remark. The matrices of rank 1, belonging to extreme rays of the cone S„, are

necessarily extreme points of Ä".

If X of rank 1 is in K, there is an « X 1 matrix A = (a¡), i = l,...,n, such that

X = (a¡aj(i, j) = l,...,n,       aj = 1 Vi.

There are 2"~1 such matrices in A^.

Theorem 2. Let X be an n X n matrix of rank r in K, X = T.rj_xAj'Aj, its Lagrange

decomposition, with 'Aj = (ax j,... ,an ■). X is an extreme point of K if and only if the

identity matrix of order r is the only invertible matrix (s¡ J in Sr verifying the system

zZ^,.jOk,fik.j = L       k = l,...,n.
'■j

(It is a system in r(r + l)/2 variables s¡_j, with n equations.)

Geometrical interpretation. It is equivalent to say that X is an extreme point iff the

n points of the projective space P(Rr) whose projective coordinates are (ak x, ...,ak r),

k = 1,... ,n, are not on the same nontrivial projective quadric in P(Rr).

Proof. We follow the test given in Theorem 1. Let F be an « X « matrix of K

with rank r and Y = T,"_xBj'Bj, its Lagrange decomposition. Let us suppose that for

ally the family (Bj, Ax,... ,Ar) is dependent. If A (resp. B) is the n X r matrix with

columns A¡ (resp. B,),j = l,...,r, there exists an invertible r X r matrix M such that
•B = M'A.
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Let L, (resp. N¡), i = 1,...,«, be the column vectors such that *L¡ = (a,■,,... ,a¡ r)

(resp. 'Nj = (b¡ x,...,bj J). X (resp. Y) is the Gram matrix (matrix of scalar

products) of the L,'s (resp. A^'s).

X(resp. Y) S K~'L:L, = 1 (resp. 'AJAJ = l)    Vi.

Now Vi = 1,... ,«, N¡, = ML,. Hence we have

(1 ) W, JV, = 1 = 'L, 'MML,    V; = 1,...,«.

Let us call S ='MM = (s¡ j)(i, j) = l,...,r: (1) is our system. Then, two cases are

possible:

1) The system admits only one solution; necessarily S — I. Then M is an isometry

of Rr. X and Y, being the Gram matrices of two isometric systems of vectors, are

equal; by Theorem 1, X is an extreme point.

2) The system admits a solution S ¥= I, invertible and an element of Sr. Let M be a

symmetric square root of S (see Gantmacher [9, Chapter 8]). Pose N¡ = ML¡,

i = 1,...,«. Let T be the Gram matrix of the N¡'s; Y satisfies conditions (i)-(iii) of

Theorem 1, but Y ^ X: Xis not an extreme point.

Corollary. The extreme points of K of rank 2 are the matrices X = (x¡ ) such

that there exists (ax,... ,aj G [0,27r[" verifying that three of the a/s are different two

by two modulo m, andxi , = cos(a, — af), Vi,j = l,...,n.

Proof. Let X = (x¡ y) be an n X n matrix of A" with rank 2, and X = AX'AX + A2'A2

its Lagrange decomposition. We have xLj = a¡ xaj x + ai2aj2, and V/, a2x + a22

= 1. So, there exists (a,,. ..,a„) e [0, 2tt[" such that, V/, a, , = cosa,, ai2 = sin a,;

hence x,-- = cos(a, — aj.

A projective quadric in P(R2) is composed of one or two points. So, either the n

projective points with coordinates (cos o„ sin a,) vanish to only one or two different

points, and X is not extremal, or not, and X is extremal.

Remarks. (1) For r = 3, such a characterization is possible, although more

tedious. The discussion is based upon the classical theorem: Five points of P(R3)

such that any three of them are not on the same line determine a unique proper

conic (cf. Berger [5]).

(2) In the general case, the problem of determining a projective quadric by a set of

points in P(Rr) is much more complicated, and not yet totally solved.
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