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FINITELY ADDITIVE SUPERMARTINGALES

ARE DIFFERENCES OF MARTINGALES

AND ADAPTED INCREASING PROCESSES

THOMAS E. ARMSTRONG

Abstract. It is shown that any nonnegative bounded supermartingale admits a

Doob-Meyer decomposition as a difference of a martingale and an adapted increas-

ing process upon appropriate choice of a reference probability measure which may

be only finitely additive.

Introduction. In [Armstrong, 1983] it is shown that every bounded finitely additive

supermartingale is a decreasing process with respect to some reference probability

measure P. This concept of a decreasing (or increasing) process is weaker than that

corresponding to decreasing (increasing) processes of random variables adapted to a

filtration. The corresponding class of finitely additive processes are called adapted

decreasing (increasing) processes with respect to P. Theorem B asserts that for every

bounded nonnegative finitely additive supermartingale Y there is a probability P so

that Y — M - A where M is a martingale and A is an adapted increasing process

with respect to P. In order to establish this it is necessary in Proposition A to show

that for g= {gt: te.T) an ordinary L^bounded nonnegative supermartingale

adapted to the linearly ordered filtration ( ¿Ft: t e T} on the probability measure

space (X, ¿F, P) to be expressed as the difference m — a where m is a martingale

and a is an increasing process with 0 = inf, a, it is necessary and sufficient that {gT:

t simple T-valued stopping time < /} be uniformly integrable for all t e T. This

extends the usual Doob-Meyer Decomposition Theorem in allowing arbitrary lin-

early ordered T.

Finitely additive supermartingales are differences of martingales and increasing

adapted sequences. The Doob-Meyer Decomposition Theorem asserts that a non-

negative L1 -bounded supermartingale /={/,: 0<í<oo} adapted to a filtration

(J^: 0 < t < oo} of sub-a-algebras in a probability space (X, ^, P) admits a

decomposition / = m — a where m is a martingale and a is an increasing process

with a0 = 0 iff / is of class DL. We recall that / is of class DL iff (/T: t stopping

time < t} is uniformly integrable (i.e., a(Ll, L°°)-relatively compact) for each t e

[0, oo ). Attention may be confined to stopping times t with only finitely many
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values (i.e., simple stopping times) in the definition of class DL. Usually the

Doob-Meyer Decomposition Theorem is stated for right-continuous / but holds for

arbitrary / as is shown in Theorem 20 of Appendix I of Dellacherie and Meyer

[1982]. See Mertens [1971] for one of the first results in this vein. Imposing

predictability guarantees uniqueness on the increasing process but this will not be of

concern to us here.

In Armstrong [1983] finitely additive supermartingales were introduced. See Gut

and Schmidt [1983] for Schmidt's work on finitely additive supermartingales on the

integers. The topic of concern here is the Doob-Meyer Decomposition Theorem in

this context. We recall that in Armstrong [1983] nitrations of a-algebras are replaced

by linearly ordered families of subalgebras of a Boolean algebra 38. If T is a chain

of subalgebras of 3d then a process Y on T is a family {Yy. se e T} where each Y^

is a finitely additive measure of bounded variation on the subalgebra sé of Sä.

Suppose that 3d is the a-algebra !F of a probability space (X, Jr, P), Y is a

filtration {J^: 0 < / < oo}, and that /= {/,: 0 < f < oo} is an L^bounded sto-

chastic process adapted to T. In this case one obtains a process Y on T by setting Y,

equal to that measure on J^ with P-density ft. Note that E(fs\&t) corresponds to

restricting Ys to J*J. As a result we adopt the conditional expectation notation

E(p\sé) for the restriction to sé of a finitely additive p. on a superalgebra of sé'. One

important distinction between processes of finitely additive measures and stochastic

processes of random variables is the absence of a reference probability measure. This

makes quite a bit of difference in what follows.

A process Y on a chain T of subalgebras of 38 is said to be a supermartingale

provided that when séx ci2 are in T then Y^ ^ E(Y^ \séx). Y is said to be a

martingale if Y¿¿ = E(Y^\séx) in the same circumstance. Given a supermartingale

Y one wishes to find a decomposition Y = M - A where M is a martingale and A is

an "increasing process" with inf{||/l^||: ¿/e T) = 0. One definition of increasing

process is given in Armstrong [1983]. If {py. see. V) is a family in BA(á?) so that

Pjj < Mj*' if séx c sé2 then this family is said to be increasing and Y = {E(p.^\sé):

sé e T} is called an increasing process on T. Decreasing processes are analogously

defined. It is shown in §6 of Armstrong [1983] that every supermartingale Y does

admit a decomposition Y = M — A where M is a martingale and A is increasing

with inf{||^4^||: sé'e T) = 0. In fact, Y is a decreasing process. This is used to show

that the class of differences of nonnegative finitely additive supermartingales (i.e.,

F-processes) is the class of differences of nonnegative submartingales. One conse-

quence is the existence of at least one P in BA^á?) (the finitely additive probability

measures on 3§) so that Y^<s: E(P\sé) for all see T. Here •« denotes the e - S

notion of absolute continuity standard for finitely additive measures. Unfortunately,

the increasing processes are not the precise analogue of increasing stochastic

processes adapted to a filtration but are more general as well be seen.

One may convert finitely additive processes on a chain T of subalgebras of 38 into

countably additive processes on a filtration of a-algebras. This may be done by

passage to the totally disconnected compact Hausdorff Stone space Xm. The clopen

algebra of Xm is isomorphic to 3d under a map A -» [^4] from 38 to the clopen
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algebra \38\. If sé is a subalgebra of 38 then sé is isomorphic to [sé] = {[A]:

A e sé} c 38. Denote by J^ the Baire algebra a([á?]) of Xa. For sé a subalgebra

of 38 denote by J^ the a-algebra a([sé]). It may be shown that J^ is isomorphic

to the Baire algebra of the Stone space X^ of sé upon identifying [A] or A with the

corresponding clopen set in X^. The Stone correspondence identifies a p e BA(á?)

with a unique jû eJÎ(Xgè) (the Radon measures on Xa) via the formula "(^4) =

/t([v4]) for all see 38. The map ¡i -» /i is a Banach lattice isomorphism from BA(á?)

onto Jt(Xa). Jl(XB) is considered to be CA(J^), the countably additive Baire

measures on Xa, in the usual fashion. If p. is in BA(sé) for some subalgebra sé of 3d

then fi is defined in the same manner as above as an element of CA( J^,). It is easily

seen that if Y = [Yy sée T} is a process on a chain T of subalgebras of 3d then

y = {Yy sée. T} is a countably additive process on {!Fy j/ g T} and that all

countably additive processes on {¿Fy sée F} arise in this fashion. A process y is a

martingale, supermartingale or increasing process iff Y is. Y is such that Y^<s:

E(P\sé) for all sé for some P G BAf(3$) iff fv«: F(P|J¡>) for all sé. In this

case, let f£ be the density of YM with respect to E(P\¿Faf) for all ¿/. The family

fp= {fy. see. T] is a stochastic process adapted to the filtration {^y j/g T}

which is a supermartingale, martingale, increasing process iff Y is.

An increasing process A = {Ay. see T) is said to be increasing with respect to

P g BA^C^) iff it is of the form {E(py\sé): see T) with {py see T) an

increasing family of measures absolutely continuous to P. If g¿ is the P-density of

fi^ we have gp = {gy. see T) increasing in Ü(Xsg, J^, P). It need not be the

case that gp is adapted to {!Fy see T}. If this is the case we say that A is an

adapted increasing process with respect to P. An equivalent requirement is that

hp = {E(gy\3F^): -^G H be increasing in L\X?, &#, P), for {py sée T}

could be replaced by {vy see T) where Pa,= h^P for sée T. One may give a

necessary and sufficient condition purely in terms of the finitely additive measures

{py see T} and P so that A be adapted. This is that each p.^ is the limit in

variation norm of a sequence {p"y n e N} where each p"^ is obtained from P by

choosing a finite partition ( Anj: j = 1,..., m) c sé scalars {X^f-: j = 1,..., m]

and letting p"y(B) = Y.J=x\^ljP(B C\ Anj). This is an exercise in the Bochner

finitely-additive Radon-Nikodym theorem (Bochner and Phillips [1941]). We are

nearly in a position to show that every finitely additive supermartingale is the

difference of a martingale and an adapted increasing process with respect to some

P e BAX(3S). The only obstacle is the extension of Doob-Meyer Decomposition

Theorem from nitrations indexed by [0, oo) to filtrations indexed by arbitrary

linearly ordered set. This is not a great obstacle, for a supermartingale has its

variation concentrated on an order separable set and such sets are isomorphic to

subsets of [0, oo ).

Proposition A. Let {J^: t e T) be a linearly ordered filtration in a probability

space (X, ¿F, P). In order that an L]-bounded supermartingale {/,: te T} adapted

to {&,: te T} admit a decomposition f = m — a where m is a martingale and a is an

increasing process with ini{\\at\\x: t e T) = 0 it is necessary and sufficient that {/T: t

simple T-valued stopping time < t] be uniformly integrable for all t G T.



622 T. E. ARMSTRONG

Proof. The case where T is order separable is considered first. In this case T is

order isomorphic to a subset of [0, oo) with 0 = inf T. Regard T as actually being a

subset of [0, oo). Extend the filtration from T to [0, oo) as follows. If t e [0, oo),

set^; = n{^: r<s, seT}. Extend / from T to [0, oo) by setting /, =

sup{F(/J ¿Ft): (<se T). We have {/T: t simple stopping time ^ /} uniformly

integrable for 0 < t < oo iff {/T: t simple T-valued stopping time < t) is uniformly

integrable for t e T. The reason for this is that uniform integrability of a family is

preserved by adjoining to it arbitrary conditional expectations on sub-a-algebras or

sequential almost sure limits. Thus, if {fT: r simple T-valued stopping time < t} is

uniformly integrable for t e T then /, = m, — a, for 0 < t < oo with m a martingale

and a an increasing process with a0 = 0. Restriction of /, m, and a to T gives us

the desired decomposition. Conversely, if ft = m, - a, for t e T with m a martingale

and a an increasing process with inîTat = 0 then {mT: t simple stopping time < t )

is uniformly integrable for t e T and, since {aT: t simple stopping time < /} is

dominated by a„ it is uniformly integrable for t e T. As a result {fr = mT-aT: t

simple stopping time < t} is uniformly integrable for t e T. This establishes the

order separable case.

In order to establish the proposition for nonseparable T it is only necessary to

show that if (/T: t simple T-valued stopping time < /} is uniformly integrable for

all t S T then / admits a Doob-Meyer decomposition. The converse is established

as in the preceding paragraph. Let Ä c [0, oo) denote {||/,||i: t e T). If r e R\R

and r is a limit from above of {H/,11,: ||/,||i > r), set J^- equal to a{ßr!: \\ft\\x > r).

If reR\R is a limit from below of {||/,||: ||/,|| < r), set J^+ equal to

H{^V ||/,|| < r}.U r e Riet Lr= {te T: \\g,\\ = r). In this case set J^+ equal to

a{^v llgfll = r) and &r- e4ual tofl{^: \\g,\\ = r}. Adjoin {r~ and/or r+: r eR)

to T to obtain T* where s < r~< r+< t if ||gj| > r > \\g,\\ and r < t < r+ if

||g,|| = r. The filtration ( &,: te T*}, as defined, extends {&{. te T). Since {/,:

s < t} is uniformly integrable for t e T we may extend / to be a supermartingale

adapted to the filtration {#¡: r g T*} by setting fr-= lim(/,: ||/,|| > r} or

/r+=lim{/,:||/,||</-}

if r g Ä \i? and by setting /r = lim{ /,: t decreasing in Lr} and

fr+= lim{/r: t increasing in Lr)

if r e R. It is easily verified that {/T: t simple T*-valued stopping time < i} is

uniformly integrable for each t e T*. The ensemble f of all r~ or r+ for r e R is

obtained by deletion of Lr from T* for all r e R. One may verify that if D is a

countable dense set in R then {r+,r~: r e D} is a countable order dense set in T.

One has ( fT: r simple T-valued stopping time < /} uniformly integrable for all

t g f. As a result, it may be concluded that, for all t e f, ft = m, — a, where m is

a martingale and a is an increasing process with 0 = inf {a,: t e f). Notice that if

r e R then ar-= ar+ almost surely for fr-= fr+ almost surely. As a result, a may be

extended to T* from f as an increasing process. If t g Lr then a, must be the

function ar-. Extend m asa martingale from f to T*. We have / = m - a on T*.

Upon restriction from T* to T we obtain the desired Doob-Meyer decomposition of

/. This completes the proof of the proposition.   D
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Theorem B. Let Y be a nonnegative bounded finitely additive supermartingale on a

chain T of subalgebras of a Boolean algebra 38. There is a P e BAX(38) and a

Q e BA+(3S) with Q «: P so that if JiQ is the martingale {E(Q\sé): see T} then

A = J(Q — Y is an adapted increasing process with respect to P.

Proof. By our previous remarks we know that Y = M - A where A is an

increasing process with inf{]|y4JÎ(,||: sée T) = 0 and M is a martingale. We may find

v G BA+(^) so that E(v\sé) = M* for see T. Since E(v\sé) = M^ it follows

that Y^^E(v\sé) for see T. Let P be Xv where X = |H|_1. It follows that

y^< \E(P\sé) for see T. Let us pass to the Stone space Xa equipped with the

filtration {^y see T] as in previous remarks. Let P ej(\(38) correspond to P

under the Stone correspondence. Let Y = {Yy se e T} be the countably additive

supermartingale on (&y. see T} corresponding to Y under the Stone correspon-

dence. Let {fy see T) = f be the supermartingale adapted to {&y sée Y) with

y^ = f^E(P\^y) for sée T. The supermartingale / is uniformly bounded in

L°°-norm by X hence is uniformly integrable. Proposition A may be applied to / to

yield a decomposition / = m — a where m isa martingale and a is an increasing

process with infiJIa^Hj: see T} = 0. Since m is uniformly integrable it is of the

form {E(h\3y): séeT) for some h e L1+(Xa, J^, P). Let Q = hP and let

Q e BA + (á?) correspond to Q under the Stone correspondence. H sée T then

A^= E(Q\sé) — Yj¿ corresponds to a^P under the Stone correspondence. It is

immediate that this Q is the one which we were seeking.    D

We may obtain the following as a nearly immediate corollary relating to ordinary

supermartingales adapted to a filtration:

Corollary C. Let (X, &, P) be a probability measure space, {&,: t e T) be a

linearly ordered filtration of sub-a-algebras of J^ and {ft: t e T) be a nonnegative

Ü-boundedsupermartingale adapted to {&,: t G T). There is a O g Lf*+(X, &■, P)

and a * e L°°*+(X, J^, P) with V «k $ so that A = {A,: t e T) c

L°°* +( X, J*", P) defined by A, = F(^| J^) — ftP is an adapted increasing process with

respect to í>.

Proof. L°°*(X, &, P) may be identified with BA(&P) where J*> is the measure

algebra of P obtained as the Boolean quotient of J5" by the ideal of P-negligible sets.

The filtration {J^: t e T) induces, under the quotient map, a chain {(&,)P: t e T)

of subalgebras of &F. {f,P: t e T) may be considered as a finitely additive

supermartingale on this chain. Theorem B applies in this situation to establish the

corollary.    D

Remarks, (a) Corollary C states that a Doob-Meyer decomposition exists for any

supermartingale if we are allowed to change the reference probability measure from

P to an element $ of BAX(&p). Note that 4> is weakly absolutely continuous with

respect to P in annihilating all P-negligible sets. If $ were to be countably additive

it would be absolutely continuous with respect to P hence of the form hP for some

h e L\+(X, &, P). In this case, * is of the form ghP for some g in Ll+(X, &, hP)

and A, is of the form a,hP where {a,: te T] is an increasing process. In this case,
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it follows that {fT: T-simple T-valued stopping time < t} is uniformly integrable for

t e T. Thus, if P = í> is an impossible choice for $ then any suitable $ must have a

nontrivial purely finitely additive part. The work of Astbury [1981] is related to this.

(b) Another connection between finite additivity and the Doob-Meyer Decom-

position Theorem is the characterization in Metivier and Pellaumail [1975] of those

nonnegative supermartingales admitting such a decomposition as those whose

Doleans-Föllmer measure on the ring of predictable sets is countably additive. Thus,

those which do not admit such a decomposition have a nontrivial purely finitely

additive part in their Doleans-Föllmer measure. The relationship between this

observation and the remarks in (a) has yet to be made precise.

(c) It need not be the case that the Doob-Meyer decomposition for countably

additive supermartingales leads one inevitably to finitely additive measures. Con-

sider ( Xt: t G T} a linearly ordered projective system of compact Hausdorff spaces

with Pts: Xs -* X, the associated continuous surjection for s ^ t. Let Xx be the

projective limit with P,: Xx -» X, the associated projection for / e T. Let ¿F be the

Baire field of Xx and for t e T let 38, be the Baire field of X,. Let 3?, = P;\38,) c J*-

for all t g T. One may consider countably additive processes adapted to the

filtration { J*",: t e T). Equip CA + (^,), hence CA + (J^), with the vague topology

so closed norm bounded sets are compact. The canonical surjection sé, y. CA+(J^)

-» CA+( J5",) associated with P, s is vaguely continuous. The proof of Theorem 6-1

of Armstrong [1983] is valid in this setting as is that of Theorem B. As a result, if Y

is a countably additive norm bounded nonnegative supermartingale adapted to ( &,:

t e T} there is a P g CA^J^) = J?ï(x«>)> and a g g CA+( J^) with Q «: P so

that, if M, g CA + ( J*;) is the restriction of Q to J^ for all t, then A, = M, - A, for

t e T yields an adapted increasing process with respect to P with

inf{|M,||: t e T) = 0.

(d) As we have remarked previously we have not considered uniqueness in the

Doob-Meyer Decomposition Theorem. This is of considerable importance for the

purpose of stochastic integration. If one considers supermartingales adapted to a

linearly ordered filtration of sub-a-algebras of a probability measure space it appears

clear that the proof of Proposition A yields a predictable increasing process in the

Doob-Meyer decomposition from a predictable increasing process on the order

separable f and conversely. Uniqueness of the predictable process on T appears to

follow from uniqueness on T. As a result it appears that, with the appropriate

definition of predictability of finitely additive processes, there is a unique predict-

able adapted increasing process with respect to P which occurs in a Doob-Meyer

decomposition of a finitely additive supermartingale in Theorem B. Of course,

different P in Theorem A give rise to different predictable adapted increasing

processes.

(e) The effects of change in the reference probability measures on semimartingales

have been considered in several places. Memin [1980] is a notable example. Usually

the new probability is one mutually absolutely continuous with respect to the

original and in these cases always countably additive.



FINITELY ADDITIVE SUPERMARTINGALES 625

References

T. E. Armstrong [1983], Finitely additive F-processes, Trans. Amer. Math. Soc. 279, 271-295.

K. A. Astbury [1981], Order convergence of martingales in terms of countably additive and purely finitely

additive martingales, Ann. Probab. 9, 226-275.

S. Bochner and R. S. Phillips [1941], Additive set functions and vector lattices, Ann. of Math. 42,

316-324.
C. Dellacheire and P. Meyer [1982], Probabilities and potential B, Theory of Martingales, North-

Holland, Amsterdam.

A. Gut and K. D. Schmidt [1983], Amarts and set function processes, Springer-Verlag, Berlin.

J. Memin [1980], Espaces de semi-martingales et changement de probabilité, Z. Wahrsch. Verw. Gebiete

52, 9-39.
J.-F. Mertens [1972], Théorie des processus stochastiques généraux applications aux supermartingales, Z.

Warsch. Verw. Gebiete 22, 45-68.

M. Metivier and J. Pellaumail [1975], On Doleans-Fôller measure for quasi-martingales, Illinois J. Math.

19, 491-504.

P. A. Meyer [1966], Probability and potential, Blaisdell, Waltham, Mass.

K. M. Rao [1969a], On decomposition theorems of Meyer, Math. Scand. 24, 66-78.

_ [1969b], Quasi-martingales, Math. Scand. 24, 79-92.

Department of Theoretical Statistics, University of Minnesota, Minneapolis, Minnesota

55455

Current address: Department of Mathematics and Computer Science, University of Maryland-Bal-

itmore County, Catonsville, Maryland 21228


