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A TOOL IN ESTABLISHING TOTAL VARIATION CONVERGENCE1

K. R. PARTHASARATHY AND TON STEERNEMAN

Abstract. Let X0, X¡, X2,... and Y0, Y¡, Y2_ be sequences of random variables

where Xn and Y„ are independent, i? Xn -> JifX0 in total variation and J? Y„ ->ify0

in distribution. For certain mappings T sufficient conditions are given in order that

¿CT(X„, Y„) ->SfT{Xa, Ya) in total variation. For example, if (RA, SSk) is the

outcome space of the Xn and Yn, and if yx0 is absolutely continuous (with respect

to Lebesgue measure), thenáC(Xn + Yn) -> J?(X0 + Y0) in total variation.

1. Introduction. The set of finite signed measures on the measurable space (SE, IF)

is a Banach space with the total variation norm || • ||, also called the Lj-norm, which

is defined by ||t|| = |t|(#"), where |t| denotes the variation measure of t. In the

sequel we shall be interested in the subspace of probability measures. For probabil-

ity measures P and Q,

(1.1) \\P-Q\\=2sivp{\P(B)-Q(B)\;Be&} = f \f-g\d\,

where / and g are density functions of P and Q, resp., with respect to a a-finite

measure X dominating P and Q (e.g. %(P + Q)).

Let X0, Xx, X2,... be a sequence of random variables with values in (SE, &).

Define P„ = £fXn for n = 0,1,2,.... We write X„ * X0 if \\Pn - P0|| -» 0. In the

following SE will be a metric space and JMhe a-algebra generated by the open sets.
s w

We write Xn -» X0 if P„^> P0.

The total variation norm can be used for a number of reasons. We shall present

some examples. Note that convergence in total variation is stronger than weak

convergence, see (1.1). Sometimes Scheffé's theorem (see Theorem 3.3) is used in

order to establish weak convergence, but in fact total variation convergence is

shown. The total variation norm plays an important part in the derivations of

so-called zero-one laws or equivalence—orthogonality dichotomies of products of

probability measures. We refer to e.g. Kakutani (1948), Blum and Pathak (1972),

Nemetz (1975), Sendler (1975), Hillion (1976) and Steememan (1983).

Suppose (SE, ¿F) = (R*, 38k), where 38k denotes the a-algebra of Borel-measurable

subsets. The following results on weak convergence are well known. Let Xn and Yn be

independently distributed /c-dimensional random vectors, n = 0,1,2,_If Xn -* X0

and y„ -* y0, then X„ + Yn -» X0 + Y0. If c„ e R, n = 0,1,2,..., with c„ -» c0, then
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Si tv tv

c„ Xn -» c0x0. If Xn -» A"0 and y„ -* y0, then it follows from the Propositions 3.1 and
tv tv

3.2 that Xn + Yn-* X0 + Y0. The question arises: What happens if Xn -» AT0, and
^ tv tv

y„ -* y0  instead  of   Yn -» y0?  Can  we conclude  that  JT„ + y„ -* J0 + y0  and
tv

In §2 we present a theorem which implies the desired results. §3 gives some

preliminary and useful results. The proof of the theorem in §2 is given in §4.

2. The main results. Let X„ and Y„ be independently distributed random variables
tv w

with outcomes in (R , 38k) for n = 0,1,2,_Assume that Xn -* X0 and y„ -» T0. In
tv

the Introduction we asked ourselves whether X„ + Yn-> X0 + Y0. This question can

affirmatively be answered in case that &Xa is absolutely continuous (with respect to
tv

Lebesgue measure). Under this additional condition we also have cnXn -* c0X0 if

c„ g R for n = 0,1,2,... and c„^> c0=t 0.

In the first case we are interested in T(X„, Y„) = X„ + Yn. In the second situation

we are concerned with T(Xn,cn) = cnXn. So, we become interested in the following

more general problem. Let Xn and Y„ for n = 0,1,2,... be independent random

variables with values in the respective metric spaces .fand <3f. Let T: SEx <&-* S£be a
tv w

measurable mapping. Suppose that Xn -* X0 and Yn -» Y0. Can we give sufficient
tv

conditions for T(Xn, Yn) -» T(X0, Y0)1 The next theorem presents an answer to this

question. The two results mentioned in the first paragraph of this section follow

from this theorem, but they can also be obtained as immediate consequences of two

corollaries given at the end of this section.

Theorem 2.1. Let SEbe a complete and separable metric space and let %'be a metric

space with respective Borel a-algebras !F, 9. Suppose p is a a-finite measure on

(SE, &) and {TY: SE-* SE\y e *&} is a family ofbijections. Let the following conditions

be satisfied:

(i) the mapping T: SEX <&-> SE defined by T(x, y) = Tv(x) is measurable;

(ii) the mapping T: SEX W'-» SE defined by T(x, y) = T~l(x) is measurable, and

T(x, y) is continuous in y for each x e SE;

(iii) pT~l is dominated by pfor any y G <W;

(iv) there exists a measurable function h: SEX <W^> [0, oo) such that

(l)h(x, y) = (dpT-1/dp)(x)a.e.x[p],foranyy e <&,

(2) h(x, y) is continuous in y for any x e SE, and

(3) sup{/i(jc, y)\y e <&, T;\x) e K) < oo for each fixed x e SE, K e SE, di-

ameter K < oo.

If {P„}, {Q„}, n = 0,1,2,..., are sequences of probability measures on (SE, 8?),
w

(<&, 9), respectively, P0 « p, \\P„ - P0\\ -> 0, and ß„ -> Q0asn-* oo, then

\\(Pn X gjT-1 -(P0 X ßo)^1!! - 0   as n - oo.

For the proof of this theorem we refer to §4. The theorem has two simple

consequences.



628 K. R. PARTHASARATHY AND TON STEERNEMAN

Corollary 2.2. Let SE be a locally compact group satisfying the second axiom of

countability with Borel a-algebra &, and let {in}, n = 0,1,2,..., be a sequence of

bimeasurable automorphisms of SE such that t„ —> t0 as n -> oo, uniformly on compacta.

If {P„}, n = 0,1,2,..., is a sequence of probability measures on (SE, IF), \\Pn — PQ\\

—> 0 as n —» oo, and P0 is dominated by a left invariant Haar measure on (SE, IF), then

II^t-1 - Poro"1!! - o.

Proof. Note that .fis a complete, separable and metrizable topological group. Let

"^be the compact space defined by the image of the sequence { t„ }, n = 0,1,2,...,

and Q„ the Dirac measure at r„.   □

Corollary 2.3. Let S£be a locally compact group satisfying the second axiom of

countability with Borel a-algebra ¡F, and let {Pn}, {Qn}, n = 0,1,2,..., be sequences
w

of probability measures on (SE, !F) such that \\Pn — P0\\ —> 0 and Qn -» Q0as n -* oo.

If Pq is dominated by a right invariant (resp. left invariant) Haar measure on (SE, !F),

then HP. *Q„-P0* ßoll -» 0 (resp. \\Q„ *Pn~Q0* P0\\ - 0) as n - oo.

Proof. Let <^=#"and define Tv(x) = xy.   D

3. Preliminaries. From (1.1) we have the following result:

Proposition 3.1. Let (SE, J5") and C&, 'S) be measurable spaces and T:SE^> '2/be a

measurable mapping. Let P and Q be probability measures on (SE, J2") and let PT l

and QT1 denote the induced probability measures on ('S/, 'S), then ||PT_1 - ÔT_1||

< IIP - ßll-

Sendler (1975) established the following result:

Proposition 3.2. For i = l,...,n let (SE„ J*j) be measurable spaces and let P¡ and

Q, be probability measures on (SE„ &t), then \\X[LXP, - A^"=1ö,|| < E?_,||P¿ - ô,||.

A very useful tool in establishing total variation convergence is Scheffé's theorem

(see e.g. Billingsley (1968), pp. 223-224).

Theorem 3.3. Let (SE, !F)be a measurable space. Let P0, Px, P2,... be a sequence

of probability measures on (SE, !F) being dominated by the a-finite measure p. For

n = 0,1,2,... let pn e dPJdp be a density function of Pn with respect to p. If p„ -* p0

a.e. [p], then \\P„ - P0\\ -» 0.

4. Proof of Theorem 2.1. In S£X(SE, !F, p), bounded, continuous functions with

support of finite diameter are dense. If /0 is a version of the Radon-Nikodym

derivative of P0 with respect to ju, then choose for any e > 0 a nonnegative, bounded,

continuous function/,, with support of finite diameter such that fft dp = 1 and

(4.1) f \fe - f0\dp < e.

Define

P'{E) - f ftdp,       Ee&.
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Now we have according to Propositions 3.1 and 3.2

\\(P„^Q„)T-1-(PQXQ0)T-1\\

<Upn x Qn)Tl -(p0 x ô„)r-'l + ||(p0 x ôJt-1 -(pe x gjr-1!

+ ||(Pf x ßjT"1 -(PE x Q&)T~l\ + ||(PE x ßo)^1 -(P0 x ßoJT-1!

<||P„-P0|| + ||P0-PE||

+ ||(¿>t X ßjT"1 -(PE X ßjT-^l + IlP' - P0||.

By (1.1) and (4.1) we obtain

(4.2) lim sup ||( P„ X Q„)Tl -(P0 X Q0)T~l\\
n—* oo

< 2£ + limsup||(PEX ßJT"1 -(PEX ß0)T_1|.
M-*00

For any E e J^, « = 0,1,2,..., and e > 0, we derive

(PE X Q„)T-\E) = j j IE(Ty(x)) dP*(x) dQ„(y)

= / / IE(Ty(x))fs(x)dp(x)dQn(y)

= f j IE(x)fXT;\x))h(x, y) dQ„(y) dp(x)

= f g*„(x)dp(x),

where IE is the indicator function of E and

(4.3) g:(x)= j fXT;\x))h(x,y)dQn(y).

So g'n is a probability density function (with respect to p) of (PE X ß„)T_1. On

account of the conditions (ii) and (iv) we have that f (T~x(x))h(x, y) is bounded
w

and continuous in y for any x e SE. Since Qn -» ß0 it now follows from (4.3) that

lim gs„(x) = go(x)    for any x e SE.
n—* oo

By Scheffé's theorem

lim ||(PE X ßJT"1 -(PE X Q0)T~l\\ = 0.
«—•oo

The proof is completed by using (4.2).    □
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