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SCATTERED COMPACTIFICATIONS AND

THE ORDERABILITY OF SCATTERED SPACES. II

S. PURISCH

Abstract. A space is suborderable if it is embeddable in a (totally) orderable space.

It is shown that a suborderable scattered space is orderable and admits an orderable

scattered compactification.

1. Introduction. A space is suborderable (also called generalized orderable) if it is

embeddable in a (totally) orderable space, and it is scattered if each of its nonempty

subsets has an isolated point. The length of a scattered space X is the least ordinal a

such that the ath derived set Ar(a) of Xis empty.

In 1976 it was announced [P,] that every suborderable scattered space of count-

able length is orderable and admits an orderable scattered compactification, and it

was conjectured that the countable length condition could be eliminated. The proof

[P3] involved a simple induction. To extend the proof to a space of uncountable

length a transfinite induction was necessary, and the major stumbling block was to

insure that the proof did not break down at limit stages. After talking, in 1980, with

R. Telgarsky it became apparent that paracompactness was the key to pass through

limit stages using the type of reduction principles found in [T]. But many suborder-

able scattered spaces are not paracompact. It was discovered, however, that at limit

stages, such a space can be partitioned into open sets, each of which satisfies a

paracompactness-like property away from an end gap, which makes these sets

manageable. This is the central idea in the following proof, and because of it the

proof here is actually simpler at limit stages than that of the special case in [P3].

Conditions were recently announced [P4] for a GO space to be orderable when the

closure of its set of pseudogap points is scattered.

One might believe that if a GO space has enough isolated points, an admissible

order can be constructed by throwing sequences of order type wn or tc* into each

pseudogap. However, in [P-W] it is shown that the subspace of the lexicographic

product [0,1] X (0,1,2} consisting of those points with second coordinate 0 or 1 is

not orderable even though its spread equals its cardinality.

2. Definitions. A suborderable space with a given admissible suborder will be

called a GO space (instead of "subordered", adopting the convention in the preface

of [B-L]).
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For most of the definitions pertaining to order relations, see [P2]. Whenever a set

has an order relation for a subscript, for instance a ray (-00, a)^ , the set is to be

considered an ordered set ordered by < .

A left gap in a GO space A1 is a nonempty clopen convex subset which is coinitial

in X and has no maximum. A left gap is a left Q-gap if there is a discrete set cofinal

in the gap. A right gap and right Q-gap are defined analogously. A pseudogap is a

left gap with a supremum in X or a right gap with an infimum in X.

The Dedekind compactification of an ordered space X is an ordered compactifica-

tion of X defined on p. 4 in [J].

Let ( X, < > be a scattered GO space, and let Y <z X. A linear ordering cc_ of Y is

L-nice (A-nice, respectively) iff (1) it generates the relative topology on Y as a

subspace of X; (2) the Dedekind compactification of (Y, oc_ > is scattered; and (3)

oc_ -min(T) (oç_ -max (Y), resp.) exists and is equal to < -min(y) (< -max(7), resp.)

if the latter exists. Y is nicely orderable iff it admits both an L-nice and an A-nice

ordering. (Note that the definition in [P3] of a single nice order with both a first and

a last point had to be modified since, for example, there is no admissible order on

the space w, allowing two endpoints.) Both L-nice and A-nice orderings are required

on a space since, in Lemma 2, each member in a disjoint collection of convex sets is

reordered, leaving a specified endpoint of the member fixed.

3. Result. The proof of the result involves a complex series of reorderings. So,

most of the proof is broken down into Lemmas 1-3, some of which are technical.

Basically, in Lemma 2 and the Theorem, X is partitioned into convex subsets. A nice

order is found for each of these convex sets. Then the order relation among the

convex sets is rearranged to induce a nice order on the entire space.

Lemma 1. If X is suborderable and has a discrete cover by nonempty clopen nicely

orderable subsets, then X is nicely orderable.

To facilitate the construction of an L-nice order, the L-nice analogue of the lemma

is given in a more technical form. An A-nice order is found similarly.

Lemma T. Suppose each (X„ <,) (/' e I) is an ordered scattered space with a first

element. Then there is a function (j>: I —> 2, and there is a linear ordering ^ of I such

that if X is the disjoint union E{ X¡: i e I) as a topological space, then X is orderable

by the ordering < defined as follows: given x, y e X, x<y iff either

(1) x e X„ y e X¡, and i cc j; or

(ii)x,y e X„ x <,j, and$(i) = 0; or

(iii) x, y e X„ y < ( x, and <p(/') = 1.

Moreover, given i0 e I where <,  -max^, ) exists, we may choose oc_ and <j> so that

i0 = oc_-min(7) and (¡>(i0) = 0, so that <-min(A') = <, -min(A', ). Finally, if each

ordered space (X„ <,) has a scattered Dedekind compactification, so does (X,<).

Note. By definition the first point under any condition of a GO space must be the

first point under an L-nice order. In Lemma T we actually need for any i0 e I that

<-min(^T) = <; -min(A'/ ). So if <, -min(A'/ ) does not exist, then there are adjacent

points u and vin (X¡, <, ) where u ^, v. Let X¡ = (-00, u]^ ,p be a "new" point
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not in /, X'p = [v, oo)^,, *£,'o be <,o restricted to X¡, <¿ be <,• restricted to XL and

for i e I - {i0} let X, = X, and <■ = <,. Then the hypothesis of Lemma V holds

for {(X¡, <;>:/' e I u {/>}} and <;o-max(A7o) exists.

Proof of Lemma T. Let Ix = {i e I: ^rmax(X,) exists}, and let I0 = I - Ix. Let

Ke = \Ie\ for e < 2.

Case A. kx > w. We may assume that Ix = {(a, n) e kx X Z: a > 0 or n > 0}

with /'0 = (0,0) (where Z is the set of integers), and we let oc_, be the lexicographic

ordering of Ix. For all /' e Ix we put <¡>(¡) = 0. Setting Xx = T.{X¡: i e Ix}, and

defining <: on Xx (from oç_, and(/>, as in the statement of the lemma), we easily verify

that Xx is orderable by <t and that <1-min(A'1) = <, -min(Ar, ).

Subcase 1. k0 < <o. Identify I0 with k0, taking oç_0 to be the usual ordering of k0.

Define <f> on I0 by <¡>(a) = 0 iff a is odd.

Subcase 2. k0 > w. Identify I0 with k0 X Z, taking oc_0 to be the lexicographic

order on I0. Define § restricted to I0 by <¡>((a, n)) = 0 iff n is even.

Case B. kx < w. Assume that Ix = kx and that i0 = 0. cc_x is now the usual

ordering of k1s and again we put <¡>[IX] = {0}, defining Xx and < as in Case A. The

same conclusions can be drawn.

Subcase 1. k0 < w. Assume I0 = k0, taking oc_0 to be the usual ordering of k0.

Define <p on I0 by ^>(«) = 0 iff a is even.

Subcase 2. k0 ^ u. Identify I0 with {(a, n) e k0 X Z: a > 0 or n ^ 0), again

taking oc_0 to be the lexicographic order on I0. Define <f> on I0 by $((a, «» = 0 iff n

is even.

Now, for all cases let < 0 be defined on X0 from oc_0 and 4> as usual, where, of

course, X0 = T,{X¡: i e I0); <Q has no pseudogaps—only gaps and jumps—so it

generates the topology of X0.

Finally, let oc_= oc^ u oc_0 U (Ix X I0) and define < from çç_ and <t>. (Thus,

(A'1,<1> and (X0, < ) are initial and final segments, respectively, of (X,<).)

Clearly, X is orderable by < unless there is a pseudogap "between" Xx and X0; but

the choice of <i> ensures that (Xx, X0) defines either a jump (if k, < w) or a gap (if

kx > w).

In each case it is rather easy to see that if each (X„ <,) (/' e I) has a scattered

Dedekind compactification, then so has (X,<), since any "new" gaps are ordered

essentially as a suborder of (L oç_ ), which is scattered.

Lemma 2. Let (X, < ) be a scattered GO space of length X + 1, and suppose that

every scattered GO space of length < X is nicely orderable. Then X is nicely orderable.

Proof. By Lemma 1 we may assume \XlX)\ = 1, since Ind X = 0 and X is

collectionwise Hausdorff implies X is the disjoint union of clopen subsets each of

whose \-derived set is a singleton. Let {x) = X^X).

If X = 0, then X, being a singleton, is obviously nicely orderable, so assume that

X > 0. By the induction hypothesis and Lemma 1, we need only show some clopen

neighborhood of x is nicely orderable. We first define on (-oo, *], or on some final

clopen segment of it, an L-nice order <x with x its greatest element.

Case A. x e cl(-oo, x). Let (ya: a < k) be a strictly increasing sequence of
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isolated points converging up to x, where k is regular. Let I0 = (-cc, y0) and for

0 < a < k, Ia = r\{[yß, ya): ß < a] (so that /0+1 = [ya, ya + x) for each a < k).

Each Ia is a scattered GO space of length < X, so by hypothesis it admits an L-nice

order < . These orders induce with < an ordering <' of (-00, x]^ : x is the greatest

element, and if u e Ia and v e Iß, then u<ft iff a < ß, or a = ß and u< v.

Moreover, <^ generates the topology on (-00, x],, , except possibly for left pseudo-

gaps of the form (-00, ya)^, (with 0 < a < k) or (-00, y')^ where a < k is a limit

ordinal and j^" = < -min(/Q). Let B be the set of such "bad" pointsya ory~.

Subcase 1. B is not cofinal in (-00, x). Choose a < k so that y < ya for each

y e B. Clearly the clopen interval [ya, x]^ admits <' as an L-nice ordering. (Note

that [ya, x]^ = [ya, *]«,.) Let <, = <{.

Subcase 2. B is cofinal in (-00, x). By choice of k we may enumerate B as {y'a:

a < k) in strictly increasing order. Let J0 = (-00, y¿) and, for each a < k, Ja =

(~l{[yß, y'a): ß < ot). Note (for a nonlimit) Ja is a (clopen) union of sets of the form

Iy. Define a function <f>: k -» 2 as follows. Given a e k, write a = 17 + n, where v is

0 or a limit ordinal, and neu; then 4>(a) = 0 iff n is even. Now define a linear

ordering <x on (-00, x] with x as its greatest element using < and <¡>: if u e Ja and

v e Jß, then u<xv iff either a < ß; or a = ß and either <¡>(a) = 0 and u<v, or

4>(a) = 1 and v<u. It is easy to check that <x is an L-nice ordering of (-00, x)^ .

(Compare with Lemma T.)

Case B. x £ cl(-oo, x). Then {x} is a final clopen segment of (-00, x]. Let

By an analogous argument there is an L-nice order < on [x, 00)^. or on some

initial clopen segment of it.

Then <x U <2 is an L-nice order on a clopen neighborhood of x. So (X, < )

admits an L-nice ordering.

The argument that (X, ^ ) admits an A-nice ordering is, of course, entirely

analogous.

Lemma 3. Let (X, < ) be a scattered GO space of length X, where X is a limit

ordinal. Let bX be the greatest ordered compactification of X, i.e., the one whose growth

is order-isomorphic to the set of gaps of X. Let S be the set of all non-Q-gaps A of X

(viewed as a subset ofbX) such that A is a limit point of A(i) for each | < À. Then S is

a discrete subset of bX, and X C\ clhXS = 0. (Note the dual role above of A: A as a

limit point is considered a point ofbX - X, while for A(i) it is considered a subset of X.)

Proof. Clearly

xnclhXSQXn r|cV*(i)= H (Xn dbXX«>)

=   f|cl^^=   fl  *<«>= X<X)=   0.
í<\ £<A

Now suppose there exists a cluster point u e S. Then there would be a monotone

sequence {ua)a<v in S converging to u. For each a < r\ we can choose xae X
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between ua and ua + x. Then {xa}a<n converges to u, and since w is a non-Q-gap of

X, there is a nonzero limit ordinal £ < tj such that {*„}„<£ converges to a point

x e X. But then ( wa}a<i converges to xSore clfcX5, which cannot happen.

Theorem. Let X be a scattered suborderable space. Then X is nicely orderable.

Proof. Let < be an admissible suborder on X. By Lemma 2 we need only

consider the case in which the length of A1 is a limit ordinal X, and each scattered

GO space of length < X is nicely orderable. Let bX and S be as in Lemma 3.

If S = 0, then the proof of the nice orderability of X follows the proof below of

the nice orderability of Ia. So let S # 0. By Lemmas 1 and 3 we may assume

5 = { u} and u is an end gap of X, since Ind bX = 0 and bX is collectionwise

Hausdorff implies bX is the disjoint union of clopen subsets each of which contains

one point of S.

There is a monotone, say increasing, sequence {ya)a<K of isolated points in X

converging to the end gap u. Let Ia = C\{[yß, ya): ß < a) for each a < k. Proceeding

as in Case A of the proof of Lemma 2, the nice orderability of X will follow from

that of the 7a's. So fix a < k. If A ç Ia is a non-g-gap of /„, then A e bX — X, and

there is a £ < X such that bX - clhxA{() is an open neighborhood of A in bX. That

is, X — clhXA(i) is an open set of X covering the gap A. (Note that A £ A — A{i),

and, in general, A(() is not closed in bX.) Then [Ia — I^ß)\ß < X} is an open cover

of /„ which covers the non-g-gaps of /„ as well. The argument of Gillman and

Henriksen [G-H] that an ordered space is paracompact iff all its gaps are £>-gaps

shows that the above cover has a locally finite open refinement, F, which—since

Ind X = 0—can actually be chosen to be a clopen partition of Ia. (The fact that

I* = IaU (all non-Q-gaps of Ia) may not be paracompact does not affect the

argument here.) Each memeber of F evidently has length < X and is therefore, by

hypothesis, nicely orderable. Then by Lemma 1, /„, and hence X, is nicely orderable.
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