
PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 95, Number 4. December 1985

FOR ANY X, THE PRODUCT XxY HAS REMOTE POINTS

FOR SOME Y

THOMAS J. PETERS1

Abstract. Any space with a o-locally finite w-base will be called a o-tt space. The

work of Chae and Smith can be extended to show that every nonpseudocompact o-tt

space has remote points.2 Sufficient conditions for a product to be a o-tt space are

developed. It is shown that, for each space, if a is a cardinal with the discrete

topology, where a is not less than ir-weight of X, then X X a" has remote points.

Cardinal function criteria are developed for the existence of o-tt spaces. An example

is given of a pathological product which is a o-tt space even though none of its finite

partial products is a o-tt space.

1. Introduction, motivation and basic preliminaries. All spaces considered are taken

to be completely regular, Hausdorff. This work exhibits products which are a-ir

spaces with remote points. Such a product may have each of its factors be of

uncountable w-weight.3 Typically, these products are nowhere locally compact and,

thus, it can be explicitly demonstrated why their remainders are nonhomogeneous

[VW]. Some examples of pathological products in this class are also exhibited.

Any terminology and notation not defined below is standard or may be found in

the texts [C4, GJ, or W]. Let A' be a space. The notation \X\ denotes the cardinality

of X; itX denotes the w-weight of X; r*(X) denotes the family of nonempty open

subsets of X. The subspace ßX\ X will be abbreviated as X*. The Greek letters a, y,

and X will always denote infinite cardinals. The Greek letter k will be used to denote
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1 Many of these results are from the author's doctoral dissertation, which was written under the

supervision of W. W. Comfort. His insight, guidance, and encouragement—given deftly and

graciously—have delightfully seasoned this work. S. B. Chae first made the suggestion to focus particular

attention upon the class of o-tt spaces, and he so named that class. G. C. Baloglou, A. Dow, A. W. Hager,

and S. W. Williams provided enlightening direction and appreciated encouragement. The referee's

comments were most helpful, particularly with respect to the inclusion of Example 3.8 and Theorem 3.9.

Theorem 3.9 is a generous contribution of the referee. The author extends his thanks to these mathemati-

cians, as well as to those who read an earlier, much longer version of this manuscript. The author

gratefully acknowledges the financial support of Wesleyan University and Computervision Corporation.

2 Chae and Smith's work utilizes normality. However, the author has learned that the more general

result stated above is true. The author gratefully acknowledges the mathematical stimulus which led to

that conclusion. (For a proof of the assertion, see [HP].)

'independently, but concurrently, Dow [D,] exhibited other products with remote points. A typical

example from [D,] fails to be a o-tt space and each of its factors has countable 7>weight.
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a cardinal, either finite or infinite. The notation cf(a) denotes the cofinality of a.

Cardinals are represented by initial ordinals. The space to always has the discrete

topology. The symbol N denotes the set (1,2, 3,...}. The symbol R denotes the real

line with the usual topology. The symbol © denotes disjoint topological union. For

an arbitrary set S and a cardinal k, let [S]K = {A: A c S and \A\ = k) and let

[5]<K = {A:A c Sand|y4| < k}.

1.1 Definition. Let Abe a space. A point/) e P is a remote point of A if there is

no nowhere dense subset A of A such that p e clßxA. Let TA denote the set of

remote points of A.

1.2 Definition. A space A is pseudo-y-compact if every locally finite family of

nonvoid open subsets of A has cardinality less than y.

2. Products which are a-tr spaces. In this section sufficient conditions for products

to be a-tr spaces are given. The following theorem is recorded here but its easy proof

is omitted.

2.1 Theorem. The class of a-tr spaces is countably productive.

In contrast to Theorem 2.1, see Example 3.7.

Uncountable products which are a-tr spaces are now considered. Later, (3.10),

(3.12) it will be shown that an uncountable product of a-tr spaces need not be a a-tr

space.

2.2 Theorem. Let ( A^}^ be a family of a-tr spaces. If there exists a countably

infinite subfamily of spaces which are not pseudo-a-compact, then X = ni<aA| ii a a-tr

space.

Proof. Without loss of generality, assume that a > w and that the countably

infinite subfamily of spaces which are not pseudo-a-compact is {X( }£<u. Then, for

each | < to there exists V¿ c t*( X() such that |V^| = a and V¿ is locally finite.

For each £ < a, let Bf = Ui<uBç,,- be a a-locally finite w-base for A¿, where for

each £ < a and each i < w, B¿ , is locally finite. Without loss of generality assume

thatBít¿cBí>m.
For each A e [a]*" and each i < u, let

(I\Bt:    BieBi /dè^Aand]

1 Bj. = Af otherwise        I

If Yli<aHi is a basic open subset of A, then for each A e [a]<u, let HA = Yl^AH^.

Now, for each n e N, a locally finite family U„ of nonempty open subsets of A

will be defined such that U = U^=1U„ is a a-locally finite w-base for A. Let n e f\l

and consider [a]". For each k < n + 1 there exists a one-to-one function fk:

[a]" -» \k. For each A e [a]", there exists a unique least k(A) < n + I such that

k(A) £ A. For each^4 e [a]", define U( A) to be a family of basic open subsets of A



THE PRODUCT XX Y 643

as follows. Let

( rm=     UAeBA,„,Uk(A) = fk(A)(A)and\
V(A) = / ¿<0 >.

I t/f = A£ otherwise I

Let U„ = U(U(^): /l G [a]"}. It will now be shown that U„ is locally finite. Let

x = (xç)ç<a be a point of A. For each £ < n + 1, there exists a neighborhood H^ of

Xç such that W^ intersects only finitely many members of B£ „ U V». Then

n ^x  n *t
f < H + 1 /; + 1 < £ < a

is a neighborhood of x which intersects some element of U(^4), for only finitely

many A's where A e [a]". This condition is because, for each A e [a]n, it is clear

that k(A) < n + 1 and if Ui<aU( e \J(A) then Uk{A) = fk(A)(A) e Vk{A) and \k(A)

is locally finite.

Let {A¡)I<N be the collection of these finitely many Ays for some N e oi. Let

F = \JI<NA¡ and note that |T| < w. For each £ e F\ n + 1, there exists a neighbor-

hood Wt of x^ such that W* intersects only finitely many members of B£ „. For each

£ e a \ (n + 1 U F), let W£ = X(. Let W = II^^. Then W is a neighborhood of

x which intersects only finitely many members of U„.

LetU = U^1U„-

It will now be shown that U is a w-base for A. Let H be a basic open subset of A

whose nonempty restriction set is R(H), that is, H = Tli<aH^, where each H^ e

t*(Xç), and 0 < \R(H)\ = w < w. Let /?(//)= {i0»---»i«-x}- For each J < m>

there exists i. such that B¿ , contains a subset of //^. Let M = max{ m, i0, ...,/'„,_,}.

Then UM contains a subset of i/ and, thus, U is a 7r-base for A.

2.3 Corollary. With y discrete, if y > a, then ya is a a-tr space, with remote

points.

For a result similar to, but more general than Corollary 2.3, see Theorem 3.12.

The next theorem has the peculiarity that it allows for the possibility of a product

being a a-tr space even though none of its factors is a a-tr space. Later (3.7), an

example is given of a countable product which is a a-tr space, even though no finite

partial product is a a-tr space. (For a related example, see [P2, 6.3].)

If the hypotheses of Theorem 2.2 above are compared to the hypotheses of

Theorem 2.4 below, it is easy to observe that the hypotheses of Theorem 2.4 may

require the existence of larger locally finite families of open sets than is needed for

Theorem 2.2. Theorem 2.4 could be proved by modifying the arguments of 2.2 (see

[P1( 3.7]), but a much shorter and simpler proof is given in [P3, 6.2].

2.4 Theorem. Let {A£}£<a be a family of spaces. Let X = supi<a{wA£} + a. If

there exists a countably infinite subfamily of spaces which are not pseudo-X-compact,

then A = FIí<aAí is a a-tr space.

2.5 Corollary. For each space X, there exists a space Y such that Ax Y is a

nonpseudocompact a-tr space with remote points.
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Proof. Let Y = a", where a has the discrete topology and a > 77 A.

As many of the examples given in this paper can be shown to be a-tr spaces via

Theorem 2.4, an example is now given which can be shown to be a a-ir space via

Theorem 2.2, but for which Theorem 2.4 is inapplicable.

2.6 Example. Let {A£}i<u be the family of discrete spaces, where A£ = w£+1 for

each £ < ux. For each £ < w,, Aj is not pseudo-Wj-compact and A = n£<i0 A£ is a

o-tt space by Theorem 2.2.

To see that Theorem 2.4 does not apply, note that if A is any uncountable subset

of Uj, then sup(eA{trX(} = cow , but it is clear that, for each £ < w,, A£ is pseudo-

wu -compact.

The interested reader can also construct examples which are a-77 spaces via

Theorem 2.4 but for which Theorem 2.2 is inapplicable (see also (3.7)).

In each of Theorems 2.2 and 2.4, hypotheses were stated in terms of locally finite

families of either cardinality a or X. Each of the theorems has an analogue, with

slightly weaker hypotheses, when the cardinal a or X has countable cofinality. This

analogue of Theorem 2.2 is stated below as Theorem 2.7. The statement of the

analogue of Theorem 2.4 is left to the reader. Proofs are omitted. It is easy to

construct spaces which satisfy the hypotheses of Theorem 2.7, but which fail to

satisfy the hypotheses of Theorem 2.2. Similar remarks apply to the analogue of

Theorem 2.4.

2.7 Theorem. Let a > u,, where ci(a) = w, and let {an}n<ube a strictly increasing

sequence of infinite cardinals such that E„<wa„ = a. Let {X¿}t<a be a family of a-tr

spaces. If there exists a countably infinite subfamily { A£ } <w such that, for each j < a>

and each n < u, A£ is not pseudo-an-compact, then X = Yl^<aXé is a a-tr space.

Like other product theorems, the following theorem has hypotheses about counta-

bly infinite subfamilies satisfying certain conditions. The advantage of this theorem

is that the conditions on the countably infinite subfamilies are determined by the

77-weights of its members. In general, this situation is more natural and easier to

recognize than the previously stated conditions. Note that the family consists

entirely of a-tr spaces.

2.8 Theorem. Let {A£}i<a be a family of a-tr spaces. If there exists a countably

infinite subfamily of spaces, each having tr-weight at least a, then X = Ilj<a A£ is a a-tr

space.

Proof. If a = w, the result follows from Theorem 2.1. If cf(a) > w, the result

follows from 3.5(a) (below) and Theorem 2.2. If cf(a) = w, the result follows from

3.5(b) (below) and Theorems 2.2 and 2.7.

In Theorem 2.8 the hypotheses concerning the existence of a-tr spaces can not be

entirely removed. For if a = w, and X( = ßux for each £ < ax (where wx is discrete),

then (ßw,)"1 is not a a-tr space because it is compact and has uncountable 77-weight

[see (3.6)].
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3. Some pathological products within the class of a-7r spaces. Throughout this

section, if a space is assumed to be a a-tr space, it is to be understood that it has a

w-base B = U„<UB„, where each B„ is locally finite and cellular [Po] (cf. [T, Wh,

Wi]). The easy proofs of the following lemmas are left to the reader.

3.1 Lemma. // A is a a-tr space and Y is an open subspace of X, then Y and clxY are

a-tr spaces.

3.2 Lemma. // A is a a-tr space and Y is a dense subspace of A, then Y is a a-tr space.

3.3 Remark. In contrast to Lemma 3.2, let Y be w,, with the discrete topology,

and let A be cox with the well-ordered topology. Then y is a a-tr space, and Y is (a

homeomorph of) a dense open subspace of A. However, it will be shown (3.6) that A

is not a a-tr space.

3.4 Lemma. Let {Xi}i<a be a family of spaces. Then © A£ is a a-tr space if and

only if X^ is a a-tr space for each £ < a.

Cardinal functions can be used to demonstrate when a space does not have a

a-locally finite ?r-base.

3.5 Theorem. Let X be a space. If

(a) cf(7rA) > w and X is pseudo-itX-compact, or

(b) there exists X < ttX such that X is pseudo-X^-compact,

then X is not a a-tr space.

Proof. Suppose A is a a-tr space.

In case (a), the pseudo-wA-compactness implies that, for each n < w, |BJ < ttA".

In case (b), the pseudo-X+-compactness implies that, for each « < w, |B„| < X.

Each case implies that |B| < ttX, which is a contradiction.

3.6 Corollary. A pseudocompact space is a a-tr space if and only if it has countable

tr-weight.

The promised surprising product pathology can now be presented. That is, an

example is given of a product which is a a-tr space, even though none of its finite

partial products is a a-tr space.

3.7 Example. With w, discrete, let A = w, X ßux. Then for each n < a, X" is not

a a-tr space (3.4), (3.6), but A" is a a-?r space (2.4). (For another example, see [P2,

6.3].)
The next example [C5] demonstrates that if the hypothesis concerning the cofi-

nality of an uncountable w-weight is eliminated from 3.5(a), then the conclusion of

3.5(a) need not hold.

3.8 Example. Let y > co and let cf(y) = u. Let A = y + 1, topologized as follows:

If x e X and x # y, then {x} is open.

If U c A and y e U, then U is open if and only if |A\ U\ < y.
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The space A" is a pseudo-y-compact, a-tr space, where trX = y. (It is easy to exhibit

an explicit a-locally finite 7r-base for such a space X. For each n < io, let y„ be a

cardinal such that yn < yn + x < y, where sup{y„: n < co) = y. For each n < u, let

B„ = {{x}: x < yn}. Then B = Un<ü)Bn is the desired 77-base.)

However, Example 3.8 has the property that each element of the 77-base has small

77-weight. Such a situation would occur rarely in the context of infinite products. The

following variant of 3.5(a) may be more appropriate in the context of infinite

products.

3.9 Theorem. Let X be a space, where trX > w and X is pseudo-trX-compact. If for

each U e t*( X), trU = trX, then X is not a a-tr space.

Proof. Because of 3.5(a), it may be assumed, without loss of generality, that

d(ttX) = a.

Suppose A" is a a-tr space. Let B = U„<ü)Bn be a 77-base for X, where for each

n < u, B„ is locally finite. There exists n' < u such that B„* is infinite. Let {Uk:

k < w} be an infinite subset of B„/. For each k < co, there exists a cardinal X^ < trX

such that suplXj.: k < u) = trX.

The supposition concerning A implies that, for each k < w, Uk is a a-tr space (3.1).

Therefore, for each k < tc, there exists a locally finite family W¿ c r*(Uk), such that

|WA| = \£ (3.5(b)). Let W = Uk<JNk. Then W is locally finite, W c T*(A) and

|W | = 77 A, which contradicts the pseudo-77A-compactness of A.

The next example demonstrates that even though the class of a-77 spaces is

countably productive, it is not productive.

3.10 Example. The space R"1, which has the countable chain condition [RS], is

pseudo-<0]-compact [Cx]. Thus, R"1 is not a a-77 space (3.5(a)), even while each of its

countable partial products is a metric space.

It is known that if A and Y are spaces and /: A -> Y is a perfect, irreducible

surjection, then A is a a-77 space if and only if Y is a a-77 space [Po]. However, open

continuous images of a-77 spaces need not be a-77 spaces. Also, even though open

subspaces of a-77 spaces are a-77 spaces (3.1), arbitrary subspaces of a-77 spaces need

not be a-77 spaces. The next example demonstrates both of these phenomena.

3.11 Example. With w, discrete, let I=io"xRU|, which is a a-77 space (2.2). Let

7=R"' and let 77: A -» y be the natural projection. Then Y is an open continuous

image of A', and Y is (homeomorphic to) a subspace of A, but Y is not a a-77 space

(3.10).
It is possible to specify exactly when an infinite power of an infinite discrete space

is a a-77 space.

3.12 Theorem. With y discrete, the space ya is a a-tr space if and only if y > a.

Proof. ( <= ) Corollary 2.3.

(=>) Let X = ya and suppose y < a. Note that A has calibre y+ [C,], and is, thus,

pseudo-y+-compact [C4, 2.1(e)]. Hence, it is clear that A'is pseudo-a-compact. Also,

note that 77A' = a [J, 4.3]. Therefore, A is not a a-77 space (3.9).
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4. Questions.4

4.1. If y > íOj is discrete and y < a, must ya have remote points? (2.3, 3.12), [DJ

4.2. Do there exists spaces A and Y such that neither X nor y is a a-77 space but

AX y is a a-77 space? (3.7), [To].

4.3. For each A, does there exist a discrete cardinal a, such that a X A has remote

points? (2.5, 3.4), [vDvM, D2].
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