ON THE STRUCTURE OF VN(G) FOR ALMOST CONNECTED GROUPS

B. MASHHOOD

ABSTRACT. We prove that for any almost connected locally compact group G, the von Neumann algebra VN(G), generated by the left regular representation of G is semifinite.

Let G be a locally compact group and VN(G) the von Neumann algebra generated by the left regular representation λ of G on $L^2(G)$. As a result of the work of Dixmier in 1969 [1] and Pukanszky in 1972 [2], it was proved that VN(G) is semifinite if G is connected. The purpose of this note is to use this result and simple arguments to prove that VN(G) is semifinite if G is almost connected.

THEOREM. If G is an almost connected locally compact group, then VN(G) is semifinite.

PROOF. First suppose that G is a Lie group with H its component of identity. Then H is an open normal subgroup of finite index, say n, in G, and $L^2(G)$ can be considered as a direct sum of n copies of $L^2(H)$. When VN(G) is represented as an algebra of $n \times n$ matrices on $L^2(H)$, the matrix entries are found to come from VN(H). Therefore we can identify each $T \in VN(G)$ by the matrix $(T_{i,j})$, with $T_{i,j} \in VN(H)$ for all $i, j \le n$. Let Φ be the function from $VN(G)^+$ into $[0, \infty]$ given by $\Phi((T_{i,j})) = \sum_{k=1}^n \phi(T_{k,k})$, where ϕ is a faithful normal semifinite trace on VN(H). Then it is easy to check that Φ is a faithful normal semifinite trace on VN(G), which implies that VN(G) is semifinite.

Now suppose G is an almost connected group. Then every neighborhood of the identity contains a compact normal subgroup K such that G/K is an almost connected Lie group. Therefore VN(G/K) is semifinite. Let $E_K = \lambda(\mu_K)$ be the central projection in VN(G) corresponding to K as defined in [3]. (μ_K is normalized Haar measure on K extended trivially to all of G.) Then by Proposition (3.6) of [3], $E_KVN(G) \simeq VN(G/K)$, which implies that E_K is a semifinite central projection. Next choose a basis $\{U_i\}$ of the identity in G directed by inclusion, and let K_i be a compact normal subgroup contained in U_i such that G/K_i is an almost connected Lie group. Then $\lambda(\mu_{K_i})$ converges to the identity in the weak operator topology. Hence VN(G) is semifinite. Q.E.D

Received by the editors November 27, 1984 and, in revised form, March 1, 1985. 1980 *Mathematics Subject Classification*. Primary 22D25, 43A65.

REFERENCES

- 1. J. Dixmier, Sur la représentation régulière d'un groupe localement compact conexe, Ann. Sci. École Norm. Sup. (4) 2 (1969), 423-436.
- 2. L. Pukanszky, Action of algebraic groups of automorphisms on the dual of a class of type I groups, Ann. Sci. École Norm. Sup. (4) 5 (1972), 379–396.
- 3. Keith F. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), 211–224.

Department of Mathematics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0