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UNIFORM DISTRIBUTION OF SECOND-ORDER LINEAR

RECURRING SEQUENCES

G. TURNWALD

Abstract. A complete classification is obtained for all second-order linear recurring

sequences uniformly distributed modulo an ideal of a Dedekind domain.

1. Introduction. A sequence of rational integers is said to be uniformly distributed

modulo m (u.d. modm) if every residue class appears with the same asymptotic

frequency. Uniform distribution of second-order linear recurring sequences was first

investigated in special cases [4, 5, 9]; then several authors obtained (partial) results

concerning u.d. modulo prime powers [2, 6, 8, 16]. Finally, R. T Bumby provided a

complete solution [1]; cf. [7, Chapter III]. The corresponding problem for order three

was solved by Knight and Webb under the additional hypothesis that m is relatively

prime to 2,3,5 [3]. Bumby remarks that his methods could possibly lead to a

solution of the corresponding problem with algebraic integers. This is indeed the

case (and was carried out by the author; unpublished), but the approach presented

here leads to considerably more general results. Specializing to rational integers, our

method yields an elementary proof of Bumby's result, totally avoiding algebraic

number theory. It is also possible to obtain a characterization of u.d. third-order

linear recurring sequences in a similar way; the result, however, becomes very

complicated [15]. The special case of rational integers (formulated in [13]) completes

the investigations of Knight and Webb. The method presented here also leads to

partial results concerning u.d. modulo prime powers for linear recurring sequences

of arbitrary order [13, 15]. Uniform distribution modulo a prime ideal (of finite

norm) in a Dedekind domain amounts to u.d. in a finite field, which was investi-

gated by Niederreiter and Shiue for linear recurring sequences up to order four [10,

11].

This paper is distilled from my thesis [14], written under the supervision of Dozent

R. F. Tichy. The case of order two that is treated here was excluded in [15], where

the larger part of the thesis is published. (The results of §§2 and 3 essentially appear

in [15] too, but mostly without (complete) proof.)

2. Linear recurring sequences. Let R be a commutative ring with unit element; let

(un) be a sequence of elements of R. A polynomial T.akxk with coefficients in R is
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190 G. TURNWALD

called a characteristic polynomial of (un) if T.akun + k = 0 for all n > 0. If a(x) =

T.akxk is a characteristic polynomial and b(x) = Y.bkxk is an arbitrary polynomial,

then a(x)b(x) again is a characteristic polynomial of (un), since

£<*,&,«»+<+/ = T.bj(La,un+,+J) = o.
'.7 J i

If («„) admits a monic characteristic polynomial c(x), we call (un) a linear

recurring sequence with characteristic polynomial c(x). We do not require that c(x)

has minimal degree. Even a restriction to monic characteristic polynomials of

minimal degree would not guarantee uniqueness: In a ring of characteristic 4 the

sequence (2,2,0,2,2,0,... ) admits the different monic characteristic polynomials

x2 — x — 1 and x2 + x + 1 of degree two, but none of degree one. In a unique

factorization domain, however, uniqueness can be proven [14, Proposition 1.1.4]. By

an rth-order linear recurring sequence we mean a sequence that admits a monic

characteristic polynomial of degree r; again, no minimality condition is assumed.

Such a sequence (un) is uniquely determined by a characteristic polynomial of

degree r and the initial terms u0,..., ur_v

Lemma 1. Let I be an ideal of R and let (u„) be a linear recurring sequence with

characteristic polynomial c(x). If Lakxk = 0 (c(x), L) then Y.akun + k = 0 (/) for all

n > 0.

Proof. By assumption there exists a polynomial T.bkxk with coefficients in / such

that T.(ak — bk)xk is a multiple of c(x). Hence, L(ak - bk)un + k = 0 and T,aku„ + k

= Uak-bk)un + k^0(I).

For the following calculations it is useful to observe that the congruences

f(x) = 0 (c(x), I) and g(x) = 0 (c(x), J) imply f(x)g(x) = 0 (c(x), IJ).

Lemma 2. Assume that x"(x' - 1) = 0 (c(x), I). Then

x2n(xkl - 1) = x2nk(x>- 1) (c(x),I2)

and

x3"(xk' - 1) - x3"k(x' - 1) + W^C*' - !)2 (c(*)' /3)

for k > 0.

Proof. From

xkl-l = (l+(x'-l))k-l

and x2"(x' - l)2 = 0 (c(x), I2) we deduce

Analogously, the second assertion follows from x3n(x' — l)3 = 0 (c(x), L3).

= i(kp-A



UNIFORM DISTRIBUTION OF RECURRING SEQUENCES 191

Theorem 1. Let I be an ideal of R and assume that a = 0 (L) for a positive integer

a. If x"0(x' — 1) = 0 (c(x), Ih°) (n0 > 0; /, h0 > 0) then for every linear recurring

sequence (un) with characteristic polynomial c(x) we have

(a) u,l + a„, = u„ (Ih° + h) forh>0,n> 2hn0,'

(b) un + kl = un + k(un + l - un) (L2h«) for n > 2n0,

(c) un+ka>, = u„ + kah~\un + al - un) (I2h» + h) forh>0,n>3- 2h^n0,

(d) "„+*«»< s «„ + kah(un + l - un) (I2*»*») forh>0,n>3- 2A"1«0, a odd.

Proof. By Lemma 1 it suffices to show that

(a') x2""»(x""' - 1) s 0 (c(x), Jh" + h),

(W) x2"»(xkl - 1) s x2""k(xl - 1) (c(x), f2h"),

(C') x^^-'^^ka'-l -1)S x3-2k-l*akaM-l(xal _  1) (^^ ¡2ha + hy

(d') x3-2"'i"«(xka"' - 1) = xi-"l""kah(xl - l)(c(x),I2h» + h).

To simplify the notation we write n instead of nQ in the sequel.

From x^'^x""1 - 1) = 0 (c(x), Ih" + h) we conclude that

x2*+1"(xfl*+X/ - l) = x2**1"a(xa''1 - l) (c(x), I2»«+2h)

by Lemma 2. Since x2""a(xa*' - 1) s 0 (c(x), //'o + ̂  + 1) and A0 + A + 1 ^ 2h0 +

2h, this proves (a') by induction, the case h = 0 being trivial. Lemma 2, again,

proves (b')-

Since 2h0 + 1 < 3/z0, Lemma 2 shows that

X3»(XW _ J) = X3-Jk(je-I - 1) + jjS«/*^,-! _  I)2 (c(x)) /2».+ l).

From x"(jca/ - 1) a 0 (c(x), Ih°) and x2"(xü/ - 1) = 0 (c(x), J*<>+1) (case h = 1

of (a')) we conclude

x3"(xal - l)2 = 0 (c(x), I2h° + 1).

This gives case h = 1 of (c'). By (a') we have x2"n(xka>'' - 1) = 0 (c(x), JAo+A) so

that, by Lemma 2,

x3-2*n(x"*a*' - l) = x3-2h"a{xkahi - l) + x3-2h"{a2){xka"' - l)2 (c(jc), /3<*» + ">)-

Since x2-2*"(xka*' - l)2 = 0 (c(x), I2^o + ̂ ) and 2A0 + A 4- 1 ^ 2(A0 + A), the

second term vanishes mod /2*»+*+1j and we obtain

,3.2».^*-»«/ _ j) . x3-*.a(xka>l _ 1) (c(x)j /2A0 + A + 1)_

The proof of (c') now follows by induction since a = 0 (I).

If a is odd, then (£) = a(a - l)/2 = 0 (I). Hence

x3"(i[)(x/-l)a-0(/2*»+1),

and Lemma 2 gives

x3"(xa/ - 1) = x3"a(x' - 1) + x3"^)^' - I)' = x3na(x' - 1) (c(x), /2*» + 1).
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Since ah~l s 0 (Ih~x), this implies

xi2k~lHah-l{xal - 1) m *3-a*"1'a*(*< - 1) (c(x), f2h°+h).

Now (d') follows from (c').

3. Uniform distribution. From now on we assume that R is a Dedekind domain,

i.e., an integral domain in which every nonzero ideal admits a (unique) representa-

tion as a product of prime ideals. Equivalently, a Dedekind domain may be defined

to be a Noetherian integrally closed domain where every nonzero prime ideal is

maximal. The examples we have in mind are p-adic integers or the ring of integers in

an algebraic number field (of finite degree). We define the norm of an ideal / by

N(I) = \R/I\. If / and J are ideals with finite norm, then N(IJ) = N(I)N(J) (cf.

[12, Chapter 8, A]). By the corresponding (rational) prime p of a nonzero prime

ideal P, we mean the characteristic of the field R/P. If N(P) is finite, it is a power

of p.

A sequence (un) of elements of R is called uniformly distributed (u.d.) mod / if /

is an ideal of finite norm and

lim n~l\{k\0 ^k < n,uk = x(f)} | = 1/N(I)
n—> oo

for every element x of R. If (un) is u.d. mod / and / is contained in J, then («„) is

u.d. mod/, since every residue class mod/ consists of N(I)/N(J) residue classes

mod /. If (un) is periodic mod / and u.d. mod /, then every period must be divisible

by 7V(/).

Let (un) be a linear recurring sequence with characteristic polynomial c(x). We

assume that c(x) splits into linear factors modulo P and that all factors incongruent

to x occur with multiplicity at most two; P denotes a fixed prime ideal of R.

Lemma 3. (a) // (un) is u.d. mod P, then N(P) = p,

uJ+n(p_1)=uJ + n(uJ+p_x- Uj)(P),        Uj+P-i - Uj^O(P)    forj>j0,

anduJ+pk(p_1) s Uj(Ph) forj>j0(h) and h > 1.

(b) IfN(P) = p andp > 2, then MJ+1,A/_1) - Uj + nph-\u]+p(p_X) - u}) (Ph + 1)

for j >j0(h) and h =s 1.

(c) IfN(P) = p andp > 5, then uJ+p(p_l} = Uj + p(uJ+p_l - Uj) (P2) for j >j0.

Proof. By definition of u.d. mod P, N(P) is finite. Let n0 be the multiplicity of x

in the factorization of c(x) modulo P. Then setting q = N(P) we have

x"»(xi-i - i)2 = 0(c(x),P),

since every linear factor incongruent to x  is a divisor of xq~l - 1  and  the

multiplicity is assumed to be at most 2. Hence,

x»0(xp(q-l) _ 1) = jc"o(x?-1 _l)'sO (c(x), P).

By Lemma 1 this implies that (u„) has period p(q - 1) modulo P. If (un) is

u.d. mod P every period length must be divisible by q = N(P); hence, we conclude

q = p. From

xn„(xn(p-l) _ 1) « *».((!  +(XP-1 - 1))" - l) = x»o f  (")(*"~1 - I)'
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and

x»*(xp-i - l)2 = 0(c(x),P),

we deduce

xn0(xntp-l)_ ^ _ xng„(xp-i _ i) (c(x);p).

Again, by Lemma 1 this implies Uj+n(p_V) - Uj = n(uj+p_x - u/) (P) for j >y0 =

n0. We now apply Theorem 1 (with I = P, a = p, h0 = 1, I = p(p — 1)) to obtain

(after a change of notation)

and

Uj+npHp-D - uj + nPh~\uj+p(p-i) - uj) (ph+l)    for h > 1. J >Jo(h), P>2.

If uj+p-i - uj s ° (p) for some i >7o> from uj+n(P-i) - "j - n(uJ+P-i - »j) (P)

we see that the residue w mod P appears at least p times (for n = 0,..., p — 1) in a

period of length p(p - 1); but if (un) is u.d. mod P every residue must appear

p — 1 times, since the number of residues is p = N(P). This concludes the proof of

(a) and (b). To prove (c) we first remark that

X2"o(XP('>-1) - 1) = X2"« £  (^(X'-1  -  1);

- x2"«(p(xf'-1 - l)+(x"-1 - 1)") (c(x),P2),

since (?) = 0(P) for 1 <,j<p- 1 and x^x^1 - l)2 = 0 (c(x), P). For p > 5

we have x2"°(xp~1 - l)p = 0 (c(x), P2); hence,

x2»»(xi»(/-l) - 1) = x2"°p(x/'-1 - 1) (c(x), P2),

which implies u^p(p_^ - Uj = p(uj+p_1 - Uj) (P2) for ; > 2«0.

Remark. If c(0) * 0 (P), then we may take n0 = 0; hence the conditions given in

the lemma hold for j > 0.

Lemma 4. Assume thatp = 2 and («„) is w.d. mod P2. 7/p = 0 (P2), then (un) is

not u.d. modP3; if p * 0(P2),(un) is u.d. mod Ph for all h > 1.

Proof. As in the proof of the preceding lemma, we conclude that x"°(x - l)2 = 0

(c(x), P), since (un) is u.d. mod P. We define r(x) = T.rkxk to be the residue of

x"°(x2 - 1) modulo c(x). From x"°(x2 - 1) = x"»(x - l)2 = 0 (c(x), P) we see

that r(x) = 0 (c(x), P). Hence, r(x) is divisible by c(x)modP, which implies

rk = 0 (P) for all &, since the degree of r(x)n\odP is smaller than the degree of

c(x)modP (= deg(c(x)) since the leading coefficient is 1). Observing that

x"°(x2k - 1) = 0 (c(x), P), we see that this implies

x"°r(x)2 as xB»£rfc2x2* = £r12(x"»(x2A: - 1) + x"°)

Sx»o£r*2ax»»(£rJ2(c(x),JP3).
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From x"°(x2 — 1) = r(x) mod(c(x)) we deduce

x2n»(x2 - l)2 = r(x)2mod(c(x)).

Hence,

x3"»(x4 - 1) = 2x3"»(x2 - 1) + jc3"°(jc2 - l)2 = 2x3"«(x2 - 1) + x"»r(x)2

= 2x3"»(x2 - 1) + x"»(^rk)2 (c(x), P3),

and, by Lemma 1,

"y+3«0+4 - Uj + 3n0 = 2(«y + 3«0 + 2 " Uj + 3n0) + ";+„„(£>*)    (^3)-

From x"°(jc2 - 1) = 0 (c(x), P) and

x2""(x4 - 1) = 2x2"«(x2 - 1) + x2""(x2 - l)2 = 0 (c(x), P2),

we see that uJ + 2 = Uj (P) and u-+4 = Uj (P2) for j >/0 = 2n0. Since (m,?) is

u.d. mod P2, each of the four residues mod P2 must appear once in a period, which

implies w/ + 2 ^ My (P2) for j >y0, i.e., w/ + 2 — w; lies in the unique residue class mod

P2 that belongs to P but not to P2. We conclude that u¡+3 — w/+1 = m- + 2 — M,

(/*2) for j > y0. Since «+1 — u ■= 1 (P), we finally obtain

£>* = ¿Zrk(Uj+l+k - uJ + k) -  ("/ + »„ + 3 - «, + »0+l) -(«y + »0 + 2- ", + «„) = 0(^2)

(taking into account that x"°(x2 - 1) = Y.rkxkmod(c(x)) implies uJ+„o+2 - k,+b

= LrkuJ + k). Hence, (ErJ2 = 0 (P3) and

Mj + 3n() + 4 ~~  "/+3n0 = 2(My+3no+2 — Wy+3„0)  (P   )■

If 2 = 0 (P2), this means that («„) has period 4mod P3; since 4 is not divisible by

N(P3) = 23, (w„) is not u.d. mod P3. Now let us assume 2*0 (P2); then the above

relation yields uj + 4 — u, * 0 (P3) for sufficiently large /'. Theorem 1 now gives

(/ = P, a = 2, A0= 1,/ = 2, Â: = 1)

«y+2»+I s «y + 2h~l(uJ + A - Uj) (Ph + 2)    for A > 0, 7 ^ 3 ■ 2h-ln0.

Hence,

Ui + 2,+ 1 = uj (Ph+1)    and    Mj,+2»+i * Uj (Ph + 2)        for j >j0(h), A > 0.

By assumption, (un) is u.d. mod P2, i.e., every residue appears once in a period of

length 4. Since w/ + 4 * y (P3), this implies that every residue mod P3 appears once

in a period of length 8. Inductively we conclude the analogous statement modulo Ph

for all A, i.e., (un) is u.d. mod P* for all A.

Theorem 2. Let I be a proper ideal of the Dedekind domain R and let (un) be a

linear recurring sequence (of elements of R) with characteristic polynomial c(x).

Assume that for every prime divisor P of I, c(x) splits into linear factors modulo P and

that the factors incongruent to x appear with multiplicity at most two. Then (un) is

u.d. mod I if and only if the following conditions hold:

(1) If P\I then (u„) is u.d. mod P; if P2\I and p = 2 or p = 3, then (u„) is

u.d. mod P2.

(2) If P2\I and p > 5, then p * 0 (P2); if P3\f andp = 2 or p = 3, then p m 0

(P2).

(3) IfP,\L (i = 1,2) and Pi * P2, then N(P¿ * N(P2).
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Proof. We assume first that (un) is u.d. mod /. Then (un) is u.d mod every divisor

of /. This proves (1). For P2\t and p ^ 5 we deduce

■*/+,(,-!>* Uj + p(uJ+p_i  - Uj)(P2)

from Lemma 3(c). Assume p = 0 (P2)\ then w,+ .( ■_1, = u¡ (P2) (for sufficiently

large j), which is impossible since the period must be divisible by N(P2) = p2. If

P3\I and p = 2, the preceding lemma implies p ^ 0 (P2). For the remaining case

p = 3 we use Lemma 3(b) to obtain

so that

«*y+,*(,-i) - «/i")    ifp = 0(P2).

Since p2(p — 1) is not divisible by N(P3) = p3, (u„) cannot be u.d. mod P3; hence

P3 cannot divide /. This concludes the proof of (2).

Assume P¡\I (i = 1,2) and Px # P2; then PlP2 divides /. Hence, the period of

(un) modulo PlP2 must be divisible by N(PlP2). By Lemma 3(a) we have N(P¡) = p¡

and (un) has period p¡(p¡ — l)mod P¡. From N(PX) = N(P2) we obtain p1 = p2 =

p, so that («„) has period p(p - l)modPlP2 = Pl n P2. Since p(p - 1) is not

divisible by N(P1P2) = p2, we arrive at a contradiction. Hence, N(P¡) # N(P2).

Now we assume (l)-(3). If P|7 then, by (1), (un) is u.d. mod P, so that Lemma

3(a) shows N(P) = p and Wy+/(,.X) s Uj(Ph) for A > 1, j>j0(h). By (3), a

rational prime p belongs only to one prime ideal. Hence, every divisor of / may be

written in the form VlPf' ■ Pk. Pi<P2< '" < P\ lAP/'' may be the empty

product. In order to prove that (un) is u.d. mod/, we may therefore proceed

inductively and show that (un) is u.d.mod T\PA -Pk+l provided («„) is u.d.mod

Yip'h .p\ pk + l\], and p, < p2 < ■ ■ ■ < p. The first step is given by the first part

of (1). If p = 2, the assertion follows from (1), (2), and Lemma 4. In the following

we assume p > 2. Define / = Ylp'-APi ~ 1); then (un) has period / modulo C\P:hl =

YIPJ1', so that uJ+nl - uf = n(uj + l - u•) (Y\P¡''') for sufficiently large j. By Lemma

3 we have

Uj+„p"(P-i)- Uj= n(uJ+pUp_l)-uJ) (Pk + l)    fork > 0, j>j0(k).

Hence,

Uj+^p-ip-i) - Uj = n(uJ+lpk(p_1) - Uj) (YIP?' ■ Pk + l).

If we can prove uJ + ¡pí(p_l) - Uj * 0 (Pk + l), then the last congruence means that

Uj+ntpUp-D (n = 0,..., p - 1) runs through the p residues mod YIPJ1' ■ Pk + X

belonging to the residue Uj mod YIP!*' ■ Pk. Since (u„) has period

lpk(p - l)mod UPA ■ Pk, this implies that (un) is u.d. mod HP*' ■ Pk + l provided

(un) is u.d. mod TIP,'" ■ Pk. From uJ + /pUp_u - U] = l(u]+pu(p_X) - u¡) (Pk + 1) and

(/, p) = 1 (since p¡ < p for all i), we see that it remains to prove «+.*(._1) — wy * 0

(Pk + l). If k = 0, this follows from Lemma 3(a). If k ^ 1 and p > 5 we have, by

Lemma 3,

Uj+pAp-i)- u) = Pk~l(uj+PtP-i)~ uj) =Pk(u,+p~i - Uj)(pk + l)-
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Since, by (2), p # 0 (P2) and uJ+p_x - wy # 0 (P), this proves the assertion in this

case. Now suppose p = 3. By (1), (un) is u.d.modP2. If uj+p(p_l) — Uj = Q (P2)

for some j>j0, then uJ+np(p_1} - Uj = n(uj+p{p_X) - Uj) (P2) implies that the

residue m  appears p times (for « = 0_, p — 1) in a period of length p2( p - 1).

Since there are p2 residues modP2, each of them must appear (p — 1) times.

Hence, u/+p(p_l) - w/# 0 (P2) for all sufficiently large /'. Consequently, the

assertion is equivalent to pk~l # 0 (P*), i.e., p#0(P2)if/c>l.To conclude the

proof we remark that k > 1 and P* + 1|7 imply P3|p hence, p # 0 (P2) follows

from (2).

Remark. (1) Let (un) be a linear recurring sequence with arbitrary characteristic

polynomial c(x), and let P be a prime ideal with finite norm. Assume that c(x) has

no multiple factors mod P except possibly the factor x, whose multiplicity we denote

by nQ. If d is the degree of the splitting field of c(x) over R/P, c(x) divides

x„0(xn(pA-i _ i) mod P, i.e., x"a(xN(P)d-1 -1)= 0 (c(x), P). Then, by Lemma 1,

(un) has period N(P)d — 1 mod P. Since this number is not divisible by N(P), (un)

cannot be u.d. mod P. Hence, in order that (un) be u.d. mod P, c(x) must have a

nontrivial multiple factor mod P.

(2) Conditions (2) and (3) of the theorem are satisfied trivially if R is the ring of

rational integers.

4. The case deg(c(x)) = 2. Apart from a substantial simplification of the proof of

Lemma 4, restriction to second-order linear recurring sequences would only have

entailed minor simplifications (mainly due to the fact that we could assume n0 = 0)

in the preceding investigations. The restriction is essential for the following complete

classification, however.

Theorem 3. Let I be a proper ideal of the Dedekind domain R and let (un) be a

linear recurring sequence (of elements of R) with characteristic polynomial c(x) =

x2 — c,x — cQ. Then (un) is u.d. mod I if and only if the following conditions hold:

(1) // P\I, then N(P) = p, c2 + 4c0 = 0 (P), c0 * 0 (P); 2w, * cYu0 (P) for

p > 2, ux m u0 (P) forp = 2. IfP2\I andp = 2, then c, * 0 (P2), c0 * 1 (P2); if

P2\Iandp = 3thenc0 + c2 * 0(P2).

(2) 7/P2|7 andp > 5, then p * 0 (P2); if P3\L andp = 2 or p = 3, then p m 0

(P2).

(3) IfPA\I (i = 1,2) andPl * P2, then N(PX) # N(P2).

Proof. By part (1) of the last remark we only have to show that (1) is equivalent

to condition (1) of Theorem 2. Let P be a prime ideal. If (un) is u.d. mod P then

N(P) = p by Lemma 3(a). The conditions c0 * 0 (P) and c2 + 4c0 = 0 (P) again

follow from the above-cited remark since they are equivalent to c(x) = (x - a)2

(P) for some a * 0 (P). From c(x) = (x - a)2 we conclude

aun = ((w, - au0)n + au0)a" (P).

Since ap'1 = aN{P)-1 = 1 (P), we obtain

^(«^„(p-i) - Uj) = n(ux - au0)(p - l)aJ = -«(«, - au0)aJ (P).
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If w, — au0 = 0 (P), this means that («„) has period p — 1 modP; hence (un) is

not u.d. mod P. If u, — au0 * 0 (P), then the subsequences (uJ + n{p_l)) (j =

0,...,p — 2) are u.d. mod P, being nontrivial arithmetic sequences mod P. Since

(un) is the union of these subsequences, we finally obtain that (un) is u.d. mod P if

and only if ux — au0 * 0 (P). For p = 2 this means ux — u0 * 0 (P); for p > 2 the

condition is equivalent to 2«! * cxu0 (P) since 2*0 (P) and 2a = c¡ (P).

Let (un) be u.d. mod P. Assume p = 2 first. We have to show that (u„) is

u.d. modP2 if and only if c0 * 1 (P2) and c, * 0 (P2). Since (w„) is u.d. mod P, we

have c0= 1 (P), c, = 0 (P), and uJ+1 = uJ■+ 1 (P) for j > 0. By Lemma 3(a) and

the following remark, uJ + A s « (P2) for jf > 0. Hence, («J is u.d.modP2 if and

only if w0 * m2 (P2) and w, * w3 (P2). The second condition may be replaced by

u3 — ux = u2 — u0 (P2). Since

("3  -  Ml) -("2 -  "o) =  (C1M2 + (C0 -  !)"l) -(Cl«l  + (C0 -  1)"o)

S CX{U2 - Ui) +(C0 - 1)(«! - U0) = C, +(C0 - 1) (P2)

and

W2 - M0 = Cl"l +(<:0 -  1)"0 - Cl(M0 +  1) + (C0 -  1)"0

■ (cx + c0 - 1)«0 + Cl (P2),

we obtain the conditions c, + (c0 - 1) = 0 (P2) and c, * 0 (P2), which are

equivalent to c0 - 1 m 0 (P2) and c, * 0 (P2).

Now assume p = 3. We prove that («„) is u.d. mod P2 if and only if c0 + c2 * 0

(P2). By Lemma 3 we have uJ+6 = «< (P) and « - + 6„ = m • + n(uJ+6 — Uj) (P2) for

j > 0. If, for some /, m+6 - Uj■ = 0 (P2), then Uj appears three times (for n = 0,1,2)

in a period of length 18; hence, («„) is not u.d. mod P2 in this case. If uJ + 6 - wy * 0

(P2), then uJ+6n (n = 0,1,2) runs through the three residues modP2 belonging to

the residue class of Uj mod P. Since («„) is u.d. mod P and uJ+6 = Uj (P), this

implies that (w„) is u.d. mod P2 provided uj+6 * u, (P2) for all j. As in the first

part of the proof we have c(x) = (x - a)2 (P), a * 0 (P); hence c0 = -a2 (P),

c, = 2a (P). From c(x) = c(a) + (2a — cx)(x - a) + (x - a)2 we conclude that

c(a)(x - a) + (x - a)3 = 0 (c(x), P2), since (2a - c,) = 0 (P), and (x - a)2 s 0

(c(x), P). Observing that

x3 - a3 = (x — a)   + 3ax(x - a)    and    x(x - a) = a(x — a) (c(x), P),

we obtain

x3 - a3 = -c(a)(x - a) + 3a2(x - a) = (3a2 - c(a))(x - a) (c(x), P2).

Since x3 - a3 = (x - a)3 = 0 (c(x), P) and x3 + a3 = x3 - a3 + 2a3 = 2a3

(c(x), P), this yields

x6 - a6 = (x3 - a3)(x3 + a3) s 2a3(3a2 - c(a))(x - a) (c(x),P2).

From a2 = aN(P)~l = 1 (P) we obtain

a6 = 1 + 3(a2 - 1) + 3(a2 - l)2 +(a2 - if = 1 (P2).
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Hence (by Lemma 1),

uj+6 - Uj = 2a3(3a2 - c(a))(uJ+l - auj) (P2).

Since u +1 — aUj = a(Uj — auj_l) = • ■ • = aj(ul — au0) (P) and ux — au0 * 0

(P), u,+6 - Uj, * 0 (P) is seen to be equivalent to 3a2 - c(a) * 0 (P2). Taking

a = 2cx (a was only subject to the condition c, = 2a (P)), we finally conclude that

(«„) is u.d. mod P2 if and only if

c2 + c0 = 3 • 4c2 -(4c2 - 2c2 - c0) * 0 (P2).
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