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PRIMITIVE NONCOMMUTATIVE JORDAN ALGEBRAS

WITH NONZERO SOCLE

ANTONIO FERNANDEZ LOPEZ AND ANGEL RODRIGUEZ PALACIOS

Abstract. Let A be a nondegenerate noncommutative Jordan algebra over a field K

of characteristic # 2. Defining the socle S(A) of A to be the socle of the plus

algebra A *", we prove that S(A) is an ideal of A; then we prove that if A has

nonzero socle, A is prime if and only if it is primitive, extending a result of Osborn

and Racine [6] for the associative case. We also describe the prime noncommutative

Jordan algebras with nonzero socle and in particular the simple noncommutative

Jordan algebras containing a completely primitive idempotent. In fact we prove that

a nondegenerate prime noncommutative Jordan algebra with nonzero socle is either

(i) a noncommutative Jordan division algebra, (ii) a simple flexible quadratic algebra

over an extension of the base field, (iii) a nondegenerate prime (commutative)

Jordan algebra with nonzero socle, or (iv) a /i-subalgebra of LK/(V){X) containing

FW(V) or of H(L¡,(V),*)(Á) containing H(Fy(V), *) where in the first case

( V, W) is a pair of dual vector spaces over an associative division A"-algebra D and

A * 1/2 is a central element of D, and where in the second case V is self-dual with

respect to an hermitian inner product (|), D has an involution a -» 5 and A =£ 1/2

is a central element of D with À + A = 1.

1. Introduction. Our aim in this paper is to obtain for noncommutative Jordan

algebras an analog of the theory of primitive associative rings with minimal

one-sided ideals. In [6] Osborn and Racine have solved this problem for the class of

prime Jordan algebras but, as we will show, this class coincides with that of primitive

Jordan algebras, in the sense of Hogben and McCrimmon [2], under the hypothesis

of nonzero socle. Next we will recall these precedings of our work in order to fix

notation.

All the algebras we consider here are over a field of characteristic not 2. A

nonassociative algebra A satisfying:

(i) (x, y, x) = 0, x, y e A (Flexible Law) where (x, y, z) = (xy)z — x(yz) is the

associator of x, y, z,

(ii) (x2, y, x) = 0, x, y e A (Jordan identity),

is called a noncommutative (in short n.c.) Jordan algebra. Let A be a n.c. Jordan

algebra. For any )ieiwe can define a new algebra structure on A, the p-mutation

A(,i), by x ■ y = pxy + (1 — p)yx. As usual A(l/2) is denoted by A +. We recall that

A + is a Jordan algebra whose product is denoted by x • y. An algebra of the form

A = P<fl) for B associative is called a split quasiassociative algebra. An algebra is

quasiassociative when it has a scalar extension AF which is split quasiassociative.

(We can always choose a quadratic extension [1, p. 583].) We recall that if J is a

nondegenerate Jordan algebra, Ua = 0 implies a = 0, then the socle S(J) of J is
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defined to be the span of all minimal inner ideals of / [6]. We also recall [5] that for

any n.c. Jordan algebra there exists a unique maximal quasi-invertible ideal Rad(A)

called the Jacobson radical of the algebra A. A is semisimple if Rad(/t) = 0. For a

n.c. Jordan algebra A we define a subset / to be a maximal-modular inner ideal if /

is a maximal-modular inner ideal of A +, and we define the core of a maximal-modu-

lar inner ideal / as the largest ideal of A contained in /. For A commutative,

Hogben and McCrimmon [2] have characterized the radical of A as the intersection

of the cores of the maximal-modular inner ideals of A. This result together with the

fact that the Jacobson radical of a n.c. Jordan algebra A is the largest ideal of A

contained in Rad(^ +) [5, Theorem 11] yields the following theorem.

Theorem 1. The Jacobson radical of a n.c. Jordan algebra is the intersection of the

cores of its maximal-modular inner ideals.

Following [3, p. 69] let (V, W) denote a pair of dual vector spaces over a division

ring D. We recall that an element a e HomD(F, V) is said to be continuous if there

exists a* e HomD(W, W), necessarily unique, such that (va, w) = (v,a*w) for all

v e V, w e W. LW(V) is the ring of continuous linear transformations of V.

FW(V) is the ideal of all elements with finite rank.

The subrings of LW(V) containing FW(V) are characterized as those primitive

rings having nonzero socle. If such a ring has an involution *, then D has an

involution, V is self-dual with respect to an hermitian or symplectic inner product

(|) and the involution * is the adjoint with respect to (|). We remark that in the

symplectic case D is a field and its involution is the identity. Also one can see that

such rings are algebras over K when D is a A'-algebra.

Let F be a self-dual vector space and let H(LV(V), *) denote the Jordan algebra

of all symmetric elements of (LV(V), *). Osborn and Racine [6] have shown that the

Jordan subalgebras of H(LV(V), *) containing H(Fy(V), *) or of LW(V)+ contain-

ing PH/(F) together with the simple Jordan algebras with descending chain condi-

tion on principal inner ideals are the only nondegenerate prime Jordan algebras with

nonzero socle.

Now let A be a A'-subalgebra of LW(V)(X) containing FW(V), where the division

ring D is an algebra over K and À is a central element of D. Since A + is then a

Jordan subalgebra of LW(V)+ containing FW(V) then we have that A+ is a

nondegenerate prime Jordan algebra with socle Ftv(V)+. Hence A is a nondegener-

ate prime noncommutative Jordan algebra with "socle" FW(V)(X\ Similarly the

X-subalgebras of H(LV(V), *)(X) containing H(FV(V), *), where À is a central

element of D with X + X = 1 are nondegenerate prime noncommutative Jordan

algebras with socle H(FV(V), *)(X). We must note that symplectic inner products

occur only in the commutative case. Indeed, as we have already pointed out, a -> a

is the identity on D in this case and together with 1 = X + À implies X = 1/2.

Other noncommutative Jordan algebras with these properties are the simple

noncommutative Jordan algebras with descending chain condition on inner ideals

described by McCrimmon in [5].
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We prove in this work that the noncommutative Jordan algebras cited above are

the only nondegenerate prime noncommutative Jordan algebras with nonzero socle,

where the socle, the span of all minimal inner ideals, is shown to be an ideal.

2. Simple noncommutative Jordan algebras containing a completely primitive

idempotent. For any element a in a n.c. Jordan algebra A, Ua denotes the linear

operator on A defined by Uax = a(ax + xa) — a2x = (ax + xa)a — xa2, x e A.

We recall that Ua = i/u+ where t/a+ is the usual {/-operator on the Jordan algebra

A +. An idempotent e in A is completely primitive if the Peirce 1-space Ax(e) = UeA

is a division algebra. A unital n.c. Jordan algebra has capacity if the unity is a sum

of mutually orthogonal completely primitive idempotents.

Lemma 2. Let J be a Jordan K-algebra and let F be a quadratic extension of K.

(i) If J is semisimple then the scalar extension JF is also semisimple.

(ii) If J is a division algebra then JF has capacity.

Proof, (i) Without loss in generality we can assume F = K ffi aK where « is an

element of F which is not in K with a2 e K, and JF = J ffi aJ. Let * be the

canonical involution a + ab -> a — ab of JF which is conjugate linear with respect

to the automorphism e, + ae2 -> e, - ae2 of F. Since Rad(7f) is a selfadjoint ideal

we have that Rad(/F) C\J=r-0 whenever Rad(/F) # 0. But Rad(/F) n / is con-

tained in Rad(y) by uniqueness of quasi-inverse. Thus Rad(JF) = 0 because J is

semisimple.

(ii) By [10] either J = D+ where D is an associative division algebra or J =

H(D, *), the symmetric elements of an associative division algebra D with an

involution *, or / = Kl ffi X, the Jordan algebra of a nondegenerate symmetric

bilinear form on a vector space X, or J is an exceptional Jordan division algebra

which is finite dimensional over its centre.

In the first case DF= D ffi ctD is an associative P-algebra with JF = DF. DF is

semisimple and it can be regarded as a left vector space over D of dimension one or

two. Hence it is easy to conclude that JF has capacity one or two. Now let us

suppose that J = H(D, *). As above we consider the algebra DF and extend the

involution of D to DF defining (a + ab)* = a* + ab*. The foregoing argument

shows that either (DF, *) is *-simple containing a minimal one-sided ideal or is a

direct sum of two such ideals. But JF = H( DF, * ), so that, by [6, Theorem 9], JF has

capacity one or two. Now we consider the case when J = Kl ffi X. Let XF = X ffi aX

be the scalar extension of X and let (|) be the unique bilinear form which extends

that of X to XP. It is easy to see that JF = PI ffi XF. Therefore JF has capacity one

or two. We must consider finally the case when J is a finite-dimensional algebra

over its centre Z. By (i) JF is semisimple and since every principal inner ideal of JF

is invariant under the multiplication by elements of Z, we have by [4, Theorem 3, p.

158] that JF has capacity.

Corollary 3. Let A be a n.c. Jordan K-algebra containing a completely primitive

idempotent and let F be a quadratic extension of K. Then the scalar extension AF

contains a completely primitive idempotent.
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Proof. Let e be a completely primitive idempotent of A. Clearly UeAF is the

scalar extension of UeA. Since the inverses in UeA and (UeA)+ are the same [5, p. 4],

Lemma 2 applied to the Jordan division algebra (UeA)+ shows that UeAF contains a

completely primitive idempotent, which remains such as in AF, as is well known.

Theorem 4. A n.c. Jordan K-algebra is simple containing a completely primitive

idempotent if and only if it is one of the following:

(i) A n.c. Jordan division algebra.

(ii) A simple flexible quadratic algebra over an extension of the base field.

(iii) A simple (commutative) Jordan algebra containing a completely primitive

idempotent.

(iv) A quasiassociative algebra of the form F¡V(V)(X) or H(FV(V), *)(X) where in

the first case (V, W) is a pair of dual vector spaces over a division K-algebra D and

X # 1/2 is a central element of D, and where in the second case V is self-dual with

respect to an hermitian inner product, D has an involution a -» a and X # 1/2 is a

central element of D with X + X = 1.

Proof. Suppose that A is a simple n.c. Jordan AT-algebra containing a completely

primitive idempotent e. If e is a unity for A, then A is a division algebra and we are

done: A is as in (i). Otherwise we have by [5, Theorem 1] that A + is a simple Jordan

algebra containing a completely primitive idempotent. Then by [6, Corollary 7]

either A +, and therefore A also, is unital with (finite) capacity or it contains a

subalgebra of capacity n for any positive integer n. The case that A is unital with

capacity one has just been rejected. If A is unital with capacity two, then by [9]

applied to the algebra A, regarded as a simple algebra over its centroid C, either A is

as in (ii) or (iii), or A is quasiassociative over C. In the remainder cases by [5,

Theorem 5] either A is as in (iii) or A is quasiassociative over C. Thus we only need

to consider the case when A is quasiassociative over C. If A, as an algebra over C, is

split quasiassociative, then A = B{X) with B associative and À g C, À # 1/2.

Clearly B is simple with minimal one-sided ideals. Therefore there exists a pair of

dual vector spaces (V, W) over a division /¿-algebra D such that A = FW(V)(X)

with X in the centre of D and X + 1/2. Otherwise there exists a quadratic extension

F of C such that AF= B(-X) where B is an associative P-algebra and X g F,

X ¥= 1/2. Since A, as an algebra over C, is central simple we have by [4, p. 206] that

AF is simple. Moreover AF contains a completely primitive idempotent by Corollary

3. Hence B is a simple associative algebra containing minimal one-sided ideals. Now

X(l — X) = y with y G C [1, Theorem 5, p. 583], and hence X = 1/2 + a where a

is an element of F which is not in C but a2 g C. Let ß -» ß denote the canonical

automorphism ex + ae2 -* e, - ae2 of F = C ffi aC and let x -» x* be the mapping

of AF = A ffi a A into itself defined by (a + ab)* = a - ab, which satisfies (ßx)*

= ßx*, (xj + x2)* = x* + x*, (x,x2)* = x*x* and (x*)* = x for all x, x,, x2 in

AF, ß G F. Clearly X + X = 1 and if ¡ti = X/(2X - 1) we have that u + ¡5 = 1 also.

But B = A^ [5, p. 18], so that * is a (linear) involution on B, regarded as an

algebra over C. Also it is clear that A = H(B, *)<A). Therefore A = H(FV(V), *)(A)

where V is self-dual with respect to an hermitian inner product ( | ) with respect to a
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division AT-algebra with involution (D, -) and X =t 1/2 is a central element of D

with À + X = 1. We recall that symplectic inner products can not occur here as we

have remarked in the introduction.

The converse follows from [6, Theorem 9] taking into account that B and B(X)

have the same Jordan structure for any associative algebra B.

3. The socle of a nondegenerate noncommutative Jordan algebra. Let A be a

nondegenerate n.c. Jordan algebra. We define the socle S(A) of A to be the span of

the minimal inner ideals of A; as usual S(A) = 0 if A does not contain any minimal

inner ideal. It is clear that S(A) = S(A+). Thus by [6, Theorem 17] S(A) is an ideal

of A+. Next we shall prove that S(A) is actually an ideal of A. Let A be a

nonassociative algebra. By a derivation of A is meant a linear operator D on A

satisfying D(xy) = xD(y) + D(x)y for all x, y g A. If M is an ideal of A, it is not

difficult to see that both M + D(M) and M n Dl(M) are ideals of A.

Lemma 5. // M is a minimal ideal of A with M2 ¥= 0 then D(M) c M for any

derivation D of A.

Proof. M C\ D~l(M) is a nonzero ideal of A. Indeed, let x, y g M such that

xy * 0. Then D(xy) = xD(y) + D(x)y G M, so that 0#^eMnö"'(M).

Hence M = M C\ D~l(M) by minimality of M, so that D(M) c M.

Suppose now that A is flexible. It is well known [7, p. 146] that the mapping

x -» [a, x] = ax — xa is a derivation of the plus algebra A +.

Proposition 6. Suppose that A is flexible and let M be a simple ideal of the plus

algebra A +. Then M is a simple ideal of A.

Proof. By Lemma 5 [a, x] g M for all a g A, x g M. Hence it is clear that M is

an ideal, plain simple, of A.

Theorem 7. The socle of a nondegenerate n.c. Jordan algebra A is the direct sum of

simple ideals containing a completely primitive idempotent.

Proof. Let M be a simple ideal of A+ containing a completely primitive

idempotent (see [6, Lemma 15]). By Proposition 6, M is a simple ideal of A. Thus

the proof is now a direct consequence of [6, Theorem 17].

Now let A be a semiprime associative algebra. An idempotent e # 0 is completely

primitive in the Jordan algebra A + iff eA is a minimal right ideal of A. Then it is not

difficult to see that the notion of socle for a n.c. Jordan algebra agrees with that

usual for an associative algebra. On the other hand this definition coincides also with

that of Slater [8] for the alternative case.

Corollary 8. The socle of a nondegenerate alternative algebra A coincides with the

socle of A as an alternative algebra.

Proof. Since by [8, Theorem 3] any minimal ideal of A is either nuclear or a

Cayley-Dickson algebra over its centre, the proof can be reduced to the associative

case.
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4. Primitive noncommutative Jordan algebras with nonzero socle. Let A be a n.c.

Jordan algebra. An ideal P of A is said to be prime when IlI2 cz P (Ix and I2 ideals

of A) implies /, c P or I2 cz P. A is said to be prime when 0 is a prime ideal. We

also recall that A is called primitive if it contains a maximal-modular inner ideal

with zero core. By making use of the methods of [2, Proposition 5.5] one can prove

that every primitive n.c. Jordan algebra is prime. Next we shall settle the converse

under the hypothesis of nonzero socle.

For any ideal / of a nonassociative algebra A we define the annihilator of /,

Ann(7) as the largest ideal B of A satisfying IB = BI = 0. Ann + (7) stands for the

annihilator of / in the plus algebra A +.

Lemma 9. Suppose that A is flexible and let I be an ideal of A. Then Ann + (7) is an

ideal of A.

Proof. Let Da denote the derivation x -* [a,x] of A+. Then, as it was already

pointed out, Da(Ann + (I)) + Ann + (I) is an ideal of A+. Moreover Da(x) ■ y =

DÂX ' y) - x ■ DÁy) = ° for a11 x Œ Ann + (7), y e I because Da(I) c I. Thus

[A, Ann + (/)] c Ann + (7). Hence it follows that Ann + (7) is an ideal of A.

Corollary 10. Let A be a flexible algebra such that B2 ¥= 0 for any nonzero ideal

B of A. Then Ann + (7) = Ann(7) for all nonzero ideals I of A.

Proof. Clearly Ann(7) c Ann + (7). Now by Lemma 9 Ann + (/) is an ideal of A

satisfying (/n Ann + (/))2 c /• Ann + (7) = 0. Thus In Ann + (7) = 0 by hypothe-

sis. Then Ann + (/) c Ann(7).

Proposition 11. Let A be a n.c. Jordan algebra. If M is a minimal ideal of A

containing a nonzero idempotent, then Ann(M) is the core of a maximal-modular

inner ideal of A.

Proof. Let e be a nonzero idempotent of A. Since UeA c M we have that

Ann(M) is contained in Ul_e(A), which is a proper e-modular inner ideal [2, 2.8], so

that it is contained in an e-maximal inner ideal I of A. Now let B be an ideal of A

contained in /. If B is not contained in Ann(M), then we have by minimality of M

that M cz B. Hence e g /, which is a contradiction since / is proper [2, Proposition

3.1]. Therefore Ann(M) is the largest ideal of A contained in /, that is, Ann(M) is

the core of /.

Theorem 12. Let A be a nondegenerate n.c. Jordan algebra with nonzero socle.

Then the following conditions are equivalent:

(j) A + is a primitive Jordan algebra;

(ii) A is primitive;

(iii) A is prime.

Proof. Clearly (i) implies (ii), and (ii) implies (iii) as we have already pointed out

at the first of this section. Thus we must prove only that (iii) implies (i). By

primeness S(A) = S(A+) = M is a simple ideal of A. But since A is nondegenerate

it follows from Corollary 10 that Ann + (M) = 0 = Ann(M) by primeness again.

Thus A + is primitive by Proposition 11 applied to the Jordan algebra A +.
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Remark. The equivalence (ii) » (iii) was settled by Osborn and Racine in [6,

Theorem 1] for an associative algebra A.

Theorem 13. A n.c. Jordan K-algebra A is nondegenerate prime with nonzero socle

if and only if it is one of the following:

I. A n.c. Jordan division K-algebra;

II. A simple flexible quadratic algebra over an extension of the base field;

III. A nondegenerate prime (commutative) Jordan K-algebra with nonzero socle;

IV. A K-subalgebra of LW(V){X) containing FW(V) or of H(LV(V), *)<A) contain-

ing H(Fy(V), *) where in the first case (V,W) is a pair of dual vector spaces over a

division K-algebra D and X # 1/2 ¡íü central element of D, and where in the second

case V is self-dual with respect to an hermitian inner product ( | ), D has an involution

a —» o; and X ¥= 1/2 is a central element of D with X + X = 1.

Proof. Suppose first that A is a nondegenerate prime n.c. Jordan AT-algebra with

socle M J= 0. By primeness M is a simple ideal containing a completely primitive

idempotent, so that we can apply Theorem 4 to the algebra M. If M is unital one

proves as in [6, p. 384] that A = M and we have finished the proof. Therefore, by

virtue of Theorem 4 and the structure theorem for simple Jordan algebras containing

a completely primitive idempotent [6, Theorem 9], we must consider only the cases

when M = FW(V)(X) or M = H(FV(V), *)(X) where X is a central element of D

and X + X = 1 in the latter case. (We do not exclude X = 1/2.)

Assume first that M = Fw(Vyx\ By [6, p. 384] there exists an isomorphism

x -» x from A + into LW(V)+ defined as follows:

Given x g A and v g V we choose an idempotent e g M such that vë = v. Then

vx = v(xx + x01), x,, x01 the Peirce components of x with respect to e. This

definition is independent of the choice of e and it is always possible to suppose

vx = oxv Now we must prove that xy = Xxy + (1 — X)yx for all x, y g A. But this

can be obtained as in the Jordan case À = 1/2 [6, p. 385] with minor alterations, so

that we omit the details. We remark that if a,eG¿^,(F) then X(ab) + (1 - X)ba

g LW(V) since À is a central element of D.

Analogously it is proved that there exists an isomorphism from A into

H(LV(V), *)<X) when M = H(FV(V), *)<X).

The converse follows from the Jordan case [6, Theorem 18] taking into account

that for any associative /f-algebra B and X g A" the algebras B and P(X> have the

same Jordan structure and that S(B)= S(B + ) = S(B(X)) whenever any one of

these exists.
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