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NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS
OVER VON NEUMANN REGULAR RINGS

L. N. VASERSTEIN!

ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A
be an associative ring with 1 whose reduction modulo its Jacobson radical is
von Neumann regular. We obtain a complete description of all subgroups of
GLn A, n > 3, which are normalized by elementary matrices.

1. Introduction. For any associative ring A with 1 and any natural number n,
let GL,, A be the group of invertible n by n matrices over A and E,, A the subgroup
generated by all elementary matrices %7, where 1 <7 # j < n and z € A.

In this paper we describe all subgroups of GL,, A normalized by E,, A for any von
Neumann regular A, provided n > 3. Our description is standard (see Bass [1] and
Vaserstein [14, 16]): a subgroup H of GL,, A is normalized by E, A if and only if
H is of level B for an ideal B of A, i.e. E,(A,B) C H C G,(A, B). Here G, (A, B)
is the inverse image of the center of GL,,(A/B) (when n > 2, this center consists
of scalar invertible matrices over the center of the ring A/B) under the canonical
homomorphism GL,, A — GL,(A/B) and E,(A, B) is the normal subgroup of E, A
generated by all elementary matrices in G,,(A4, B) (when n > 3, the group E,(A, B)
is generated by matrices of the form (—y)*z*7/y/* withz € B,y € A,1 <1 # j < n,
see [14]).

Recall that a ring A is called von Neumann regular (see von Neumann [13],
Goodearl [7]) if for any z in A there is z in A such that zzz = z. Then every factor
ring and every ideal of A is also von Neumann regular.

In fact, to be more general, we assume that A/rad(A) (rather than A) is von
Neumann regular, where rad means the Jacobson radical. For example, this as-
sumption holds for any Artinian ring A or for any commutative semilocal ring A.

THEOREM 1. Assume that A/rad(A) ts von Neumann reqular and n > 2. Then
for any vdeal B of A:

(a) En(A, B) contains all matrices of the form 1, + vu, where v is an n-column
over A, u is an n-row over B, and uwv = 0; in particular, E,(A, B) is normal in
GL, A4;

(b) En(A, B) D [E,A,G,(A, B)]; in particular, every subgroup of GL,, A of level
B 15 normalized by E, A;

(¢) if n > 3, we have E (A, B) = [E,A, E,B] = [GL, A, E,(A, B)| = [E,A, H|
for any subgroup H of level B, where E,B is the subgroup of G,(A, B) generated
by elementary matrices;
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(d) of A 15 von Neumann regular, we have E, B = E,,(A, B); if moreover, n > 3,
we have E, B = [E, B, E,B].

THEOREM 2. Assume that A/rad(A) is von Neumann regular and n > 3. Then
every subgroup H of GL, A normalized by E,A 1s of level B for some ideal B of
A, ie. E (A, B) C HC Go(A,B).

Note that a subgroup H of GL, A, n > 2, cannot be of level B and of level B’
for two distinct ideals B and B’ of A. So the level B in Theorem 2 is ungiue.

Theorems 1 and 2 were proved by Dickson [2] when A is a field (the condition
n > 3 in this case can be replaced by the condition card(A) > 4), by Dieudonné (3]
when A is a division ring, by Klingenberg [10] when A is a commutative local ring,
by Bass [1] when A satisfies the stable range condition sr(A) < n— 1, by Vaserstein
[14] when central localizations of A satisfy this stable range condition (for example,
when A is finite as module over its center) and n > 3, and by Vaserstein [16] when A
is a Banach algebra. Theorem 2 is claimed by Golubchik [5, 6] under the additional
condition that A/M is an Ore ring for every maximal ideal M of A.

Note that von Neumann regular rings A satisfying sr(A) < 1 are known as unit
regular rings, see (7, 8,9, 11, 12, 15].

2. Proof of Theorem 1(a). We write
v !
v= ()= N and u = (u;) = (v, un)

with v; in A and u; in B.

Case 1. 1+ vpu, € GL;B. We set d := 1 + vpUpn, d' = 1 + uyv, =
1 - v € GL1 B (see [17, §2]) and @ = 1,_1 + vt/ — Vupd~ v, = L1+
V(1 — upd™lvp)u’ = 1,1 + v'd’~*’. Then

V) /
UnlY d

[ laor Vupd -1 a 0 ) Y 0
- 0 1 0 d d v 1

€ E,B (8 2) E,B.

We have to prove that (3 9) € E,.(4, B).
Since 1 +v/v'd' ™! = d'~!, we have

a 0y [ 1.0y O\ [l —o/d! , 0
0 1) \va'! 1 0 1 —u 1
i 1n—l ‘l)’ ln—l 0
0 1 0 d-!

.y O
eEn(A,B)( "01 d,_l).
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By (17, §2],

.y O
( 01 d,_1d>€En(A,B).

So 1, + vu € E, (A, B) in Case 1.

Case 2. v; € rad(A) for some ¢ with 1 < ¢ < n. Since E, (A, B) is normalized by
all permutation matrices, we can assume that « = n. Then 1 + v,u, € GL; B, so
we are reduced to Case 1.

General case. We now use the condition that A/rad(A) is von Neumann regular,
hence there is an z in A such that v, zv, — v, € rad(A4). Then 1+ v, (1 — zv,)u, €
GL; B, hence g := 1, + v(1 — zv,)u € GL, B by Case 1.

Also we have

(—vn—lx)n—l,n(ln + m;'vnu)(vn_lx)n—l,n
=1, + ((—Vn-12)" "™zvn_1) (W(vp_1z)"" 1"
and

)n—l,n

((~vp-1z VIV )n—1 = Un—1(1 — 20,) 2V = Un_1Z(Vy — VLZV,) € rad(A),

hence h := 1,, + vzv,u € E,(A, B) by Case 2 with ¢ = n — 1.
Therefore 1,, + vu = gh € E,(A, B).

3. Proof of Theorem 1(b). It suffices to show that [y*7, g] := y*Ig(—y)*7g~?
€ E, (A, B) for any elementary y* in E, A and any g in G, (A4, B). Since E, (A, B)
is norr alized by all permutation matrices, we can assume that (z,7) = (1,n).

Then [y*7,g] = y""(1, — vyw), where v = (;’;) is the first column of g and
w = (w',wy) is the last row of g~!, so wv = 0.

As in the end of the previous section, we find = in A such that v,zv, — v, €
rad(A), and we have h := 1,, — vzv,w € E, (A, B), hence

[(xvn)l’nag] = (zvn)l’n(ln —vzvaw) € En(A, B),

i.e. (zv,)™ and g commute modulo E, (A, B).
To complete our proof, it suffices to show that (1 — zv,)!'™ also commutes with
g modulo E, (A, B). We set u:= —(1 — zv,)w = (v, up,). Then
(1 = zvn)"™, gl = (1 — zv,) Y™ (15 + vu0),

with vpu, = vp(l — zv,)w, € rad(B), hence d := 1 + vyu, € GL; B. Also v; € B
fors>2, u;€ Bfor j<n-1andviu,+1€B.

Wesetd :=14u,v, =1—uw'v €GL;Banda :=1,_; + Vv —vu,d v,/ =
1,_1+ v'd~1u'. Then

_ 1,n (1 1n [ ln-1 Vupd™? a 0 1,1 O
(1= 202" (1l + vu) = (1 = 20r) (0 1 0 d)\d o 1

a 0
e E,B (0 d) E,.B.

Now, as in the previous section (see Case 1 there), we see that (3 5) € En(A4, B).
(Note that v’ is an (n — 1)-row over B.)
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4. Proof of Theorem 1(c). In the view of Theorem 1(a), (b), we have only
the inclusion E,B C [E,A, E,B] to prove. But we have it for any ring A with 1
and any n > 3 by the formula z*7 = 19k, %], where 1 < i # j # k # ¢ < n and
z € B.

5. Proof of Theorem 1(d). We want to prove first that E,(A, B) = E,B,
i.e. E,B is normalized by every elementary matrix y*’ in GL, A. Since E,B is
normalized by all permutation matrices, we can assume that (¢,7) = (1,2). It
suffices to prove that h := (—y)}2gy"? € E, B for every elementary matrix g in
E,B. This is trivial (and true for an arbitrary ring A) unless g = z%! where z € B.
In this case we can assume that n = 2.

Since A is von Neumann regular, z = zzz for some x in A. We have

h=(—y)t22>y"? = (—z2y) P (z2y — y) 22> (y — z2y) 2 (z2y) 2.
But (z2y)"? € E;B and

1+ (zz—-1)yz O
(zzy —y)1’222*1(y—a:zy)1’2 — ( ( ; )y 1)

= ((zz — V)yzz)"22%1((1 — z2)yz)"? € E,B.

When n > 3, for any elementary 2"/ in E, B we have 27 = [(zz)*, 2%7], where

k # 1,7 and z = zzz with z in A.

6. Proof of Theorem 2. Let H be a subgroup of GL,, A normalized by E, A,
where n > 3. The condition that A/rad(A) is von Neumann regular will not be
used in Cases 1-5 of Lemma 3 below or Lemma 4.

LEMMA 3. If H is not central, then H contains an elementary matriz # 1,,.

PROOF. Case 1. H 5 g = (g;,;) such that g, = 0 and g does not commute
with some 15! € E, A. Then H contains an elementary matrix # 1,, by Vaserstein
(14].

Case 2. H 5 h = (h; ;) such that h, 2 # 0 and A, 1 + hn 2y = 0 for some y in A.
Then H 5 (—y)*ha®1 =: g = (gi) and g1 = hns + hnoy = 0,gn2 = hnz # 0,
so [g,1%1] # 1,,. Thus, we are reduced to Case 1.

Case 3. H contains a noncentral g = (g;,;) with g, 1 = 0. If g does not commute
with some 15! € E, A, we are done by Case 1. Otherwise, g is a scalar matrix:
gi,; =0 =g;; —g;; for all © # j. Since g does not belong to the center of GL,, A,
there is y in A such that yg1.1 # g1,1y. Then [g,y>?] = (91,1y — yg2,2)"% # 1, is
an elementary matrix in H.

Case 4. H contains a noncentral h = (h; ;) with he 2 € GL; A. If (h™1), 1 =0,
we are done by Case 3 with g = h=!. Otherwise, H > (—1)12112h = (g; ;) with
(gn,15gn.2) = (™Y n,1(h2,1, ha,2), so we are reduced to Case 2.

Case 5. H contains a noncentral h = (h; ;) with h, 2 = 0. Since f := (_01 (1)) =

((1) })(_1l (1))(3 }) € E3A, we have f' := ((f)lno_z) € E,A and g := f'hf'""' € H.
Since gn,1 = hn,2 = 0, we are reduced to Case 3.

General case. We pick a noncentral h = (h;;) in H and find z in A such
that 2z := h, ozhp 2 — hy 2 € rad(A). We set p := 1 — hyoz. If ph,q =0, ie.

hn,1— hn2thy,1 =0, then we are done by Case 5 or Case 2. Otherwise, the matrix
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g = (9i,;) == h~pt"h(—p)!'™ € H is not central and gz 2 = 1 + (A1) 1phn 2 =
1— (h71)2,12 € GL; A, so we are reduced to Case 4.

LEMMA 4. IfH > 259, wherex € A,1 <1 # j <n, then H D E,(A, B), where
B is the (two-sided) ideal of A generated by x.

PROOF. It follows easily from the identities y*72*7 = (y + 2)*7 and [y*7, 29¥] =
(y2)bk, where 1 <i < j#k #i<nandy,z are in A (we use here that n > 3; no
conditions on A are needed).

Now we can conclude our proof of Theorem 2. By Lemma 4, there is an ideal
B of A such that E,(A, B) contains all elementary matrices in H. Consider
the image H' of H in GL,(A/B). Since the ring (4/B)/rad(A/B) is a factor
ring of A/rad(A), it is also von Neumann regular. Since H' is normalized by
E,(A/B) which is the image of E,A, Lemma 3 applied to H' gives that either H’
is central or H’' contains an elementary matrix ('), where 0 # 2/ € A/B and
1 <7 # 3 <n. In the latter case, H > z%Jg, where 0 # = € A,2’ = z + B,
and g € GL, B. We pick an integer k # 7,7 in the interval 1 < k < n. Then
H > [z%99g, 19k] = gbk15kghi[(—1)0k g](—2)*(~1)7k € 29*E,(A, B) C 2%*H by
Theorem 1(b). Therefore H 3 z** which contradicts our choice of B.

Thus, H' is central in GL,(A/B), i.e. H C G, (A4, B).

REMARK. From the proof of Theorem 1(a) (see §2 above), it is clear that the
group E, (A, B) is generated by matrices of the form (—y)’*z*/y’* with z in B
and y in A, provided n > 2 and A/rad(A) is von Neumann regular. If n > 3, no
restrictions on A are needed.
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