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NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS
OVER VON NEUMANN REGULAR RINGS

L. N. VASERSTEIN1

ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A

be an associative ring with 1 whose reduction modulo its Jacobson radical is

von Neumann regular. We obtain a complete description of all subgroups of

GLn A, n > 3, which are normalized by elementary matrices.

1. Introduction. For any associative ring A with 1 and any natural number n,

let GLn A be the group of invertible n by n matrices over A and EnA the subgroup

generated by all elementary matrices x1'3, where 1 < i / j < n and x E A.

In this paper we describe all subgroups of GLn A normalized by EnA for any von

Neumann regular A, provided n > 3. Our description is standard (see Bass [1] and

Vaserstein [14, 16]): a subgroup H of GL„ A is normalized by EnA if and only if

H is of level B for an ideal B of A, i.e. E„(A, B) C H C Gn(A, B). Here Gn(A, B)
is the inverse image of the center of GL„(,4/S) (when n > 2, this center consists

of scalar invertible matrices over the center of the ring A/B) under the canonical

homomorphism GL„ A —► GLn(A/B) and En(A, B) is the normal subgroup of EnA

generated by all elementary matrices in Gn(A, B) (when n > 3, the group En(A, B)

is generated by matrices of the form (—y)J'lx1'Jy:i''1 with x € B,y £ A,l < i ^ j < n,

see [14]).

Recall that a ring A is called von Neumann regular (see von Neumann [13],

Goodearl [7]) if for any z in A there is x in A such that zxz = z. Then every factor

ring and every ideal of A is also von Neumann regular.

In fact, to be more general, we assume that A/vad(A) (rather than A) is von

Neumann regular, where rad means the Jacobson radical. For example, this as-

sumption holds for any Artinian ring A or for any commutative semilocal ring A.

THEOREM l. Assume that A/rad(A) is von Neumann regular and n > 2. Then

for any ideal B of A:

(a) En(A, B) contains all matrices of the form ln + vu, where v is an n-column

over A, u is an n-row over B, and uv = 0; in particular, En(A,B) is normal in

GLnA;

(b) En(A, B) D [EnA,Gn(A,B)]; in particular, every subgroup of GLn A of level

B is normalized by EnA;

(c) ifn>3, we have En(A,B) = [EnA,EnB] = [GL„ A,En(A,B)\ = [EnA,H]
for any subgroup H of level B, where EnB is the subgroup of Gn(A, B) generated

by elementary matrices;
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(d) if A is von Neumann regular, we have EnB = En(A,B)\ if moreover, n > 3,

we have EnB = [EnB,EnB\.

THEOREM 2. Assume that A/r&d(A) is von Neumann regular and n > 3. Then

every subgroup H of GLn A normalized by EnA is of level B for some ideal B of

A, i.e. En(A,B) c H c Gn(A,B).

Note that a subgroup H of GLnA, n > 2, cannot be of level B and of level B'

for two distinct ideals B and B' of A. So the level B in Theorem 2 is unqiue.

Theorems 1 and 2 were proved by Dickson [2] when A is a field (the condition

n > 3 in this case can be replaced by the condition card(A) > 4), by Dieudonné [3]

when A is a division ring, by Klingenberg [10] when A is a commutative local ring,

by Bass [1] when A satisfies the stable range condition sr(A) < n — 1, by Vaserstein

[14] when central localizations of A satisfy this stable range condition (for example,

when A is finite as module over its center) and n > 3, and by Vaserstein [16] when A

is a Banach algebra. Theorem 2 is claimed by Golubchik [5, 6] under the additional

condition that A/M is an Ore ring for every maximal ideal M of A.

Note that von Neumann regular rings A satisfying sr(A) < 1 are known as unit

regular rings, see [7, 8, 9, 11, 12, 15].

2. Proof of Theorem 1(a).  We write

v = (ví) = 1     and    u = (uj) = (u',un)

with vx in A and Uj in B.

Case 1. 1 + vnun G GLi B. We set d := 1 + vnun, d' :— 1 + unvn —

1 — u'v' G GLi B (see [17, §2]) and a = l„_i + v'u' — v'und~1vnu' = ln_i +

v'(l - und~~lvn)ul = 1„_! + v'd'^^u'. Then

ln + vu =
l„_i + v'u'    v'un \

vny' d   J

ln_i     v'und-l\ (a    0\ (    l„_i       0

0 1 0    c!        d~1vnu'    1

GEnB

We have to prove that (g °) € En(A, B).

Since 1 + u'v'd'~

eEn(A,B
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By [17, §2],

So ln + vu G En(A, B) in Case 1.

Case 2. i>¿ G rad(A) for some i with 1 < i < n. Since En(A, B) is normalized by

all permutation matrices, we can assume that i — n. Then 1 + vnun G GLi B, so

we are reduced to Case 1.

General case. We now use the condition that A/r&d(A) is von Neumann regular,

hence there is an x in A such that vnxvn — vn G rad(A). Then 1 +vn(l — xvn)un G

GLi B, hence g := ln + v(l — xvn)u G GL„ B by Case 1.

Also we have

(-vn-ix)n-l>n(ln + vxvnu)(vn^x)n'^n

= ln + ((-vn.ix)n-^nvxvn.i)(u(vn^ix)n-^n)

and

((-vn-ix)n~l'nvxvn)n-i = v„-i(l - xvn)xvn = vn-ix(vn - vnxvn) G rad(,4),

hence h :— ln + vxvnu G En(A, B) by Case 2 with i = n — 1.

Therefore 1„ + vu = gh G En(A, B).

3. Proof of Theorem 1(b). It suffices to show that [yt,J ,g] := y1'3 g^y)1'3 g~l

G Sn(A, B) for any elementary y1'3 in £nyl and any g in G„(yl, £?). Since En(A, B)

is norr alized by all permutation matrices, we can assume that (i,j) = (l,n).

Then [y1'3, ¡7] = y1,n(ln — vyw), where v = (" ) is the first column of g and

w = (u/, wn) is the last row of g~x, so wv = 0.

As in the end of the previous section, we find x in A such that vnxvn — vn G

rad(^4), and we have h := 1„ — vxvnw G Ü7n(-<4i #), hence

[(i«„)1'n,j] = (a:un)1,n(ln-v:n;nw) e£„(A,.B),

i.e. (x^n)1'" and g commute modulo En(A,B).

To complete our proof, it suffices to show that (1 — xvn)l,n also commutes with

g modulo En(A,B). We set u := —(I — xvn)w = (u',un). Then

[(1 - xvny>n,g] = (1 - xvn)l'n(ln + vu),

with vnun = vn(l — xvn)wn G rad(B), hence d := 1 + vnun G GLi B. Also D,£ß

for i > 2, Uj G B for j < n — 1 and viun + 1 G B.

We set d' := l + u„vn = 1 — u'v' G GLi ß and o := ln_i +u'u' —v'und~1vnu' =

l„_i + v'd'-V. Then

(i - „o^o.+») - (i - -i'- ( v -Y ' ) (; ;) (,-c. ï)

Now, as in the previous section (see Case 1 there), we see that (g °) G 2?n(-<4, ¿?).

(Note that u' is an (n — l)-row over B.)
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4. Proof of Theorem 1(c). In the view of Theorem 1(a), (b), we have only

the inclusion EnB C \EnA, EnB\ to prove. But we have it for any ring A with 1

and any n > 3 by the formula xt,J = [V'k ,xk-3}, where l<i^j/=k^i<n and

xeB.

5. Proof of Theorem 1(d). We want to prove first that En(A,B) = EnB,

i.e. EnB is normalized by every elementary matrix y%A in GL„ A. Since EnB is

normalized by all permutation matrices, we can assume that (i,j) = (1,2). It

suffices to prove that h := (—y)l,2gy1'2 G EnB for every elementary matrix g in

EnB. This is trivial (and true for an arbitrary ring A) unless g = z2'1 where z G B.

In this case we can assume that n = 2.

Since A is von Neumann regular, z = zxz for some x in A. We have

h = (-^V'V'2 = (-xzyy<2(xzy - yf<2z2\y - xzy)^(xzyf>2.

But (xzy)1'2 G E2B and

(xzy-yy^(y-xzy)^=(1 + ^-^Z    °\

= ((xz - l)yzx)h2z2'l((l - xz)yz)1'2 G E2B.

When n > 3, for any elementary z1'3 in EnB we have z1'3 = [(zx)l,k, zk'3}, where

k -/- i, j and z = zxz with x in A.

6. Proof of Theorem 2. Let H be a subgroup of GL„ A normalized by EnA,

where n > 3. The condition that A/rad(A) is von Neumann regular will not be

used in Cases 1-5 of Lemma 3 below or Lemma 4.

LEMMA 3.   If H is not central, then H contains an elementary matrix ^ ln.

PROOF. Case 1. H 3 g = (Qîj) such that gnj = 0 and g does not commute

with some lk,i G EnA. Then H contains an elementary matrix ^ ln by Vaserstein

[14].
Case 2. H 3 h = (hi¿) such that hn¿ /=- 0 and hn¿ + hn^y = 0 for some y in A.

Then H 3 (-y^^hx2'1 =: g = (gitj) and gnA = hnA + hn<2y = 0, g„,2 = fen,2 ¥* 0,
so [g, I2,1] 7^ ln. Thus, we are reduced to Case 1.

Case 3. H contains a noncentral g = (g¿,j) with gn^i =0. If g does not commute

with some l**1 G EnA, we are done by Case 1. Otherwise, g is a scalar matrix:

gij = 0 = gij — gJtj for all i ^ j. Since g does not belong to the center of GL„ A,

there is y in A such that ygux ^ g^iy. Then [g,y1,2] = (ffi.iy - yg2,2)1,2 ^ U is

an elementary matrix in H.

Case 4. H contains a noncentral h = (hi¿) with /i2,2 G GLi A. If (/i_1)n,i = 0,

we are done by Case 3 with g = h~l. Otherwise, H 3 ( —l)1,2l1,2/i = (g¿j) with

(<?n,i; f?n,2) = (^~1)n,i(^2,ii ^2,2), so we are reduced to Case 2.

Case 5. i7 contains a noncentral h = (hij) with hn¿ = 0. Since / := (_x 0) =

(âi)(-iî)(oî) G E*A'we have /' := (ou.J e £«A and 9 := w_1 e F-
Since g„,i = hn¿ = 0, we are reduced to Case 3.

General case. We pick a noncentral h = (h{¿) in H and find x in A such

that ^ := hn^xhn^i — hn¿ G rad(A). We set p := 1 — hn^x. If p/in,i = 0, i.e.

hn,i — hn^.xhn^i = 0, then we are done by Case 5 or Case 2. Otherwise, the matrix
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g = Í9ij) '■= h~1p1'nh(—p)1,n € H is not central and g2,2 = 1 + (h~1)2,iphn¡2 —

1 — (h~1)2,iz G GLi A, so we are reduced to Case 4.

LEMMA 4. If H 3 i*,J, where xGA,l<i^j<n, then H D En(A,B), where
B is the (two-sided) ideal of A generated by x.

PROOF. It follows easily from the identities yl'3z1,3 = (y + z)1'3 and [y1'3, z3'k\ =

(yz)l'k, where 1 < i < j /= k /= i <n and y, z are in A (we use here that n > 3; no

conditions on A are needed).

Now we can conclude our proof of Theorem 2. By Lemma 4, there is an ideal

B of A such that En(A, B) contains all elementary matrices in H. Consider

the image H' of H in GLn(A/B). Since the ring (A/B)/rad(A/B) is a factor

ring of A/rad(A), it is also von Neumann regular. Since H' is normalized by

En(A/B) which is the image of EnA, Lemma 3 applied to H' gives that either H'

is central or H' contains an elementary matrix (x')l'3\ where 0 / x' G A/B and

1 < t 7e J < i- In the latter case, H 3 x%'3g, where 0^i£i,i' = i + ß,

and g G GLn B. We pick an integer k 7^ i,j in the interval 1 < k < n. Then
H 3 [xl'3g,l3'k] = xi'kV'kxi':i[(-ï)3''k,g}(-x)i':>(-iy'k G xl'kEn(A,B) c xl>kH by

Theorem 1(b). Therefore H 3 xl'k which contradicts our choice of B.

Thus, H' is central in GLn(A/B), i.e. H c Gn(A,B).

REMARK. From the proof of Theorem 1(a) (see §2 above), it is clear that the

group En(A,B) is generated by matrices of the form (—y)3>%xx%3y3%% with x in B

and y in A, provided n > 2 and A/rad(A) is von Neumann regular. If n > 3, no

restrictions on A are needed.
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