NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS OVER VON NEUMANN REGULAR RINGS

L. N. VASERSTEIN¹

ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A be an associative ring with 1 whose reduction modulo its Jacobson radical is von Neumann regular. We obtain a complete description of all subgroups of $GL_n A$, $n \geq 3$, which are normalized by elementary matrices.

1. Introduction. For any associative ring A with 1 and any natural number n, let $GL_n A$ be the group of invertible n by n matrices over A and $E_n A$ the subgroup generated by all elementary matrices $x^{i,j}$, where $1 \le i \ne j \le n$ and $x \in A$.

In this paper we describe all subgroups of $\operatorname{GL}_n A$ normalized by $E_n A$ for any von Neumann regular A, provided $n \geq 3$. Our description is standard (see Bass [1] and Vaserstein [14, 16]): a subgroup H of $\operatorname{GL}_n A$ is normalized by $E_n A$ if and only if H is of level B for an ideal B of A, i.e. $E_n(A,B) \subset H \subset G_n(A,B)$. Here $G_n(A,B)$ is the inverse image of the center of $\operatorname{GL}_n(A/B)$ (when $n \geq 2$, this center consists of scalar invertible matrices over the center of the ring A/B) under the canonical homomorphism $\operatorname{GL}_n A \to \operatorname{GL}_n(A/B)$ and $E_n(A,B)$ is the normal subgroup of $E_n A$ generated by all elementary matrices in $G_n(A,B)$ (when $n \geq 3$, the group $E_n(A,B)$ is generated by matrices of the form $(-y)^{j,i}x^{i,j}y^{j,i}$ with $x \in B, y \in A, 1 \leq i \neq j \leq n$, see [14]).

Recall that a ring A is called von Neumann regular (see von Neumann [13], Goodearl [7]) if for any z in A there is x in A such that zxz = z. Then every factor ring and every ideal of A is also von Neumann regular.

In fact, to be more general, we assume that A/rad(A) (rather than A) is von Neumann regular, where rad means the Jacobson radical. For example, this assumption holds for any Artinian ring A or for any commutative semilocal ring A.

THEOREM 1. Assume that A/rad(A) is von Neumann regular and $n \geq 2$. Then for any ideal B of A:

- (a) $E_n(A, B)$ contains all matrices of the form $1_n + vu$, where v is an n-column over A, u is an n-row over B, and uv = 0; in particular, $E_n(A, B)$ is normal in $GL_n A$;
- (b) $E_n(A, B) \supset [E_nA, G_n(A, B)]$; in particular, every subgroup of GL_nA of level B is normalized by E_nA ;
- (c) if $n \geq 3$, we have $E_n(A, B) = [E_n A, E_n B] = [GL_n A, E_n(A, B)] = [E_n A, H]$ for any subgroup H of level B, where $E_n B$ is the subgroup of $G_n(A, B)$ generated by elementary matrices;

Received by the editors February 13, 1985. Presented to the Society, April 21, 1985 at the 819th meeting.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 16A54, 18F25, 16A30.

¹ Supported by National Science and Guggenheim Foundations.

(d) if A is von Neumann regular, we have $E_nB = E_n(A, B)$; if moreover, $n \geq 3$, we have $E_nB = [E_nB, E_nB]$.

THEOREM 2. Assume that $A/\operatorname{rad}(A)$ is von Neumann regular and $n \geq 3$. Then every subgroup H of $\operatorname{GL}_n A$ normalized by $E_n A$ is of level B for some ideal B of A, i.e. $E_n(A,B) \subset H \subset G_n(A,B)$.

Note that a subgroup H of GL_nA , $n \geq 2$, cannot be of level B and of level B' for two distinct ideals B and B' of A. So the level B in Theorem 2 is unque.

Theorems 1 and 2 were proved by Dickson [2] when A is a field (the condition $n \geq 3$ in this case can be replaced by the condition $\operatorname{card}(A) \geq 4$), by Dieudonné [3] when A is a division ring, by Klingenberg [10] when A is a commutative local ring, by Bass [1] when A satisfies the stable range condition $\operatorname{sr}(A) \leq n-1$, by Vaserstein [14] when central localizations of A satisfy this stable range condition (for example, when A is finite as module over its center) and $n \geq 3$, and by Vaserstein [16] when A is a Banach algebra. Theorem 2 is claimed by Golubchik [5, 6] under the additional condition that A/M is an Ore ring for every maximal ideal M of A.

Note that von Neumann regular rings A satisfying $sr(A) \le 1$ are known as unit regular rings, see [7, 8, 9, 11, 12, 15].

2. Proof of Theorem 1(a). We write

$$v = (v_i) = \left(egin{array}{c} v' \ v_n \end{array}
ight) \quad ext{and} \quad u = (u_j) = (u', u_n)$$

with v_i in A and u_j in B.

Case 1. $1 + v_n u_n \in GL_1 B$. We set $d := 1 + v_n u_n$, $d' := 1 + u_n v_n = 1 - u'v' \in GL_1 B$ (see [17, §2]) and $a = 1_{n-1} + v'u' - v'u_n d^{-1}v_n u' = 1_{n-1} + v'(1 - u_n d^{-1}v_n)u' = 1_{n-1} + v'd'^{-1}u'$. Then

$$\begin{aligned} 1_n + vu &= \begin{pmatrix} 1_{n-1} + v'u' & v'u_n \\ v_ny' & d \end{pmatrix} \\ &= \begin{pmatrix} 1_{n-1} & v'u_nd - 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1_{n-1} & 0 \\ d^{-1}v_nu' & 1 \end{pmatrix} \\ &\in E_nB \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} E_nB. \end{aligned}$$

We have to prove that $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \in E_n(A, B)$. Since $1 + u'v'd'^{-1} = d'^{-1}$, we have

$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1_{n-1} & 0 \\ u'a^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & -v'd'^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1_n & 0 \\ -u' & 1 \end{pmatrix}$$
$$\cdot \begin{pmatrix} 1_{n-1} & v' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & 0 \\ 0 & d'^{-1} \end{pmatrix}$$
$$\in E_n(A, B) \begin{pmatrix} 1_{n-1} & 0 \\ 0 & d'^{-1} \end{pmatrix}.$$

By [17, §2],

$$\begin{pmatrix} 1_{n-1} & 0 \\ 0 & d'^{-1}d \end{pmatrix} \in E_n(A, B).$$

So $1_n + vu \in E_n(A, B)$ in Case 1.

Case 2. $v_i \in \text{rad}(A)$ for some i with $1 \le i \le n$. Since $E_n(A, B)$ is normalized by all permutation matrices, we can assume that i = n. Then $1 + v_n u_n \in \text{GL}_1 B$, so we are reduced to Case 1.

General case. We now use the condition that $A/\operatorname{rad}(A)$ is von Neumann regular, hence there is an x in A such that $v_n x v_n - v_n \in \operatorname{rad}(A)$. Then $1 + v_n (1 - x v_n) u_n \in \operatorname{GL}_1 B$, hence $g := 1_n + v(1 - x v_n) u \in \operatorname{GL}_n B$ by Case 1.

Also we have

$$(-v_{n-1}x)^{n-1,n}(1_n + vxv_nu)(v_{n-1}x)^{n-1,n}$$

= $1_n + ((-v_{n-1}x)^{n-1,n}vxv_{n-1})(u(v_{n-1}x)^{n-1,n})$

and

$$((-v_{n-1}x)^{n-1,n}vxv_n)_{n-1} = v_{n-1}(1-xv_n)xv_n = v_{n-1}x(v_n-v_nxv_n) \in rad(A),$$

hence $h := 1_n + vxv_nu \in E_n(A, B)$ by Case 2 with i = n - 1.

Therefore $1_n + vu = gh \in E_n(A, B)$.

3. Proof of Theorem 1(b). It suffices to show that $[y^{i,j},g] := y^{i,j}g(-y)^{i,j}g^{-1} \in E_n(A,B)$ for any elementary $y^{i,j}$ in E_nA and any g in $G_n(A,B)$. Since $E_n(A,B)$ is norr alized by all permutation matrices, we can assume that (i,j) = (1,n).

Then $[y^{i,j}, g] = y^{1,n}(1_n - vyw)$, where $v = \binom{v'}{v_n}$ is the first column of g and $w = (w', w_n)$ is the last row of g^{-1} , so wv = 0.

As in the end of the previous section, we find x in A such that $v_n x v_n - v_n \in rad(A)$, and we have $h := 1_n - v x v_n w \in E_n(A, B)$, hence

$$[(xv_n)^{1,n}, g] = (xv_n)^{1,n}(1_n - vxv_n w) \in E_n(A, B),$$

i.e. $(xv_n)^{1,n}$ and g commute modulo $E_n(A, B)$.

To complete our proof, it suffices to show that $(1 - xv_n)^{1,n}$ also commutes with g modulo $E_n(A, B)$. We set $u := -(1 - xv_n)w = (u', u_n)$. Then

$$[(1-xv_n)^{1,n},g] = (1-xv_n)^{1,n}(1_n+vu),$$

with $v_n u_n = v_n (1 - x v_n) w_n \in rad(B)$, hence $d := 1 + v_n u_n \in GL_1 B$. Also $v_i \in B$ for $i \geq 2$, $u_i \in B$ for $j \leq n-1$ and $v_1 u_n + 1 \in B$.

We set $d' := 1 + u_n v_n = 1 - u'v' \in GL_1 B$ and $a := 1_{n-1} + v'u' - v'u_n d^{-1}v_n u' = 1_{n-1} + v'd'^{-1}u'$. Then

$$(1-xv_n)^{1,n}(1_n+vu) = (1-xv_n)^{1,n} \begin{pmatrix} 1_{n-1} & v'u_nd^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1_{n-1} & 0 \\ d^{-1}v_nu' & 1 \end{pmatrix}$$

$$\in E_n B \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} E_n B.$$

Now, as in the previous section (see Case 1 there), we see that $\binom{a\ 0}{0\ d} \in E_n(A, B)$. (Note that u' is an (n-1)-row over B.)

- **4. Proof of Theorem 1(c).** In the view of Theorem 1(a), (b), we have only the inclusion $E_nB \subset [E_nA, E_nB]$ to prove. But we have it for any ring A with 1 and any $n \geq 3$ by the formula $x^{i,j} = [1^{i,k}, x^{k,j}]$, where $1 \leq i \neq j \neq k \neq i \leq n$ and $x \in B$.
- **5. Proof of Theorem 1(d).** We want to prove first that $E_n(A, B) = E_n B$, i.e. $E_n B$ is normalized by every elementary matrix $y^{i,j}$ in $\mathrm{GL}_n A$. Since $E_n B$ is normalized by all permutation matrices, we can assume that (i,j)=(1,2). It suffices to prove that $h:=(-y)^{1,2}gy^{1,2}\in E_n B$ for every elementary matrix g in $E_n B$. This is trivial (and true for an arbitrary ring A) unless $g=z^{2,1}$ where $z\in B$. In this case we can assume that n=2.

Since A is von Neumann regular, z = zxz for some x in A. We have

$$h = (-y)^{1,2} z^{2,1} y^{1,2} = (-xzy)^{1,2} (xzy - y)^{1,2} z^{2,1} (y - xzy)^{1,2} (xzy)^{1,2}.$$

But $(xzy)^{1,2} \in E_2B$ and

$$(xzy - y)^{1,2}z^{2,1}(y - xzy)^{1,2} = \begin{pmatrix} 1 + (xz - 1)yz & 0\\ z & 1 \end{pmatrix}$$
$$= ((xz - 1)yzx)^{1,2}z^{2,1}((1 - xz)yz)^{1,2} \in E_2B.$$

When $n \geq 3$, for any elementary $z^{i,j}$ in $E_n B$ we have $z^{i,j} = [(zx)^{i,k}, z^{k,j}]$, where $k \neq i, j$ and z = zxz with x in A.

- **6. Proof of Theorem 2.** Let H be a subgroup of $GL_n A$ normalized by $E_n A$, where $n \geq 3$. The condition that A/rad(A) is von Neumann regular will not be used in Cases 1–5 of Lemma 3 below or Lemma 4.
 - LEMMA 3. If H is not central, then H contains an elementary matrix $\neq 1_n$.
- PROOF. Case 1. $H \ni g = (g_{i,j})$ such that $g_{n,1} = 0$ and g does not commute with some $1^{k,1} \in E_n A$. Then H contains an elementary matrix $\neq 1_n$ by Vaserstein [14].
- Case 2. $H \ni h = (h_{i,j})$ such that $h_{n,2} \neq 0$ and $h_{n,1} + h_{n,2}y = 0$ for some y in A. Then $H \ni (-y)^{2,1}hx^{2,1} =: g = (g_{i,j})$ and $g_{n,1} = h_{n,1} + h_{n,2}y = 0, g_{n,2} = h_{n,2} \neq 0$, so $[g, 1^{2,1}] \neq 1_n$. Thus, we are reduced to Case 1.
- Case 3. H contains a noncentral $g=(g_{i,j})$ with $g_{n,1}=0$. If g does not commute with some $1^{k,1}\in E_nA$, we are done by Case 1. Otherwise, g is a scalar matrix: $g_{i,j}=0=g_{i,i}-g_{j,j}$ for all $i\neq j$. Since g does not belong to the center of GL_nA , there is g in g such that $g_{g_{1,1}}\neq g_{1,1}g$. Then $[g,g^{1,2}]=(g_{1,1}g-g_{2,2})^{1,2}\neq 1_n$ is an elementary matrix in g.
- Case 4. H contains a noncentral $h = (h_{i,j})$ with $h_{2,2} \in GL_1 A$. If $(h^{-1})_{n,1} = 0$, we are done by Case 3 with $g = h^{-1}$. Otherwise, $H \ni (-1)^{1,2} 1^{1,2} h = (g_{i,j})$ with $(g_{n,1}, g_{n,2}) = (h^{-1})_{n,1} (h_{2,1}, h_{2,2})$, so we are reduced to Case 2.
- Case 5. H contains a noncentral $h=(h_{i,j})$ with $h_{n,2}=0$. Since $f:=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\in E_2A$, we have $f':=\begin{pmatrix} f & 0 \\ 0 & 1_{n-2} \end{pmatrix}\in E_nA$ and $g:=f'hf'^{-1}\in H$. Since $g_{n,1}=h_{n,2}=0$, we are reduced to Case 3.

General case. We pick a noncentral $h=(h_{i,j})$ in H and find x in A such that $z:=h_{n,2}xh_{n,2}-h_{n,2}\in \operatorname{rad}(A)$. We set $p:=1-h_{n,2}x$. If $ph_{n,1}=0$, i.e. $h_{n,1}-h_{n,2}xh_{n,1}=0$, then we are done by Case 5 or Case 2. Otherwise, the matrix

 $g = (g_{i,j}) := h^{-1}p^{1,n}h(-p)^{1,n} \in H$ is not central and $g_{2,2} = 1 + (h^{-1})_{2,1}ph_{n,2} = 1 - (h^{-1})_{2,1}z \in GL_1 A$, so we are reduced to Case 4.

LEMMA 4. If $H \ni x^{i,j}$, where $x \in A, 1 \le i \ne j \le n$, then $H \supset E_n(A,B)$, where B is the (two-sided) ideal of A generated by x.

PROOF. It follows easily from the identities $y^{i,j}z^{i,j}=(y+z)^{i,j}$ and $[y^{i,j},z^{j,k}]=(yz)^{i,k}$, where $1 \le i \le j \ne k \ne i \le n$ and y,z are in A (we use here that $n \ge 3$; no conditions on A are needed).

Now we can conclude our proof of Theorem 2. By Lemma 4, there is an ideal B of A such that $E_n(A,B)$ contains all elementary matrices in H. Consider the image H' of H in $\mathrm{GL}_n(A/B)$. Since the ring $(A/B)/\mathrm{rad}(A/B)$ is a factor ring of $A/\mathrm{rad}(A)$, it is also von Neumann regular. Since H' is normalized by $E_n(A/B)$ which is the image of E_nA , Lemma 3 applied to H' gives that either H' is central or H' contains an elementary matrix $(x')^{i,j}$, where $0 \neq x' \in A/B$ and $1 \leq i \neq j \leq n$. In the latter case, $H \ni x^{i,j}g$, where $0 \neq x \in A, x' = x + B$, and $g \in \mathrm{GL}_n B$. We pick an integer $k \neq i,j$ in the interval $1 \leq k \leq n$. Then $H \ni [x^{i,j}g,1^{j,k}] = x^{i,k}1^{j,k}x^{i,j}[(-1)^{j,k},g](-x)^{i,j}(-1)^{j,k} \in x^{i,k}E_n(A,B) \subset x^{i,k}H$ by Theorem 1(b). Therefore $H \ni x^{i,k}$ which contradicts our choice of B.

Thus, H' is central in $GL_n(A/B)$, i.e. $H \subset G_n(A,B)$.

REMARK. From the proof of Theorem 1(a) (see §2 above), it is clear that the group $E_n(A, B)$ is generated by matrices of the form $(-y)^{j,i}x^{i,j}y^{j,i}$ with x in B and y in A, provided $n \geq 2$ and A/rad(A) is von Neumann regular. If $n \geq 3$, no restrictions on A are needed.

REFERENCES

- 1. H. Bass, K-theory and stable algebra, Publ. Math. Inst. Hautes Etudes Sci. 22 (1964), 5-60.
- L. E. Dickson, Theory of linear groups in an arbitrary field, Trans. Amer. Math. Soc. 2 (1901), 363-394.
- J. Dieudonné, Le géométrie des groupes classiques, 3rd ed., Springer, New York and Berlin, 1971.
- 4. G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976), 81-90.
- I. Z. Golubchik, Normal subgroups of linear groups over rings, Vestnik Moskov Univ. Ser. I Mat. Mekh. 1978, no. 6, 79. (Russian)
- 6. I. Z. Golubchik and A. V. Mikhalev, Epimorphisms of projective groups over associative rings, Algebra, Moskov Univ., 1982, pp. 34-45.
- K. R. Goodearl, Von Neumann regular rings, Pitman, London, San Francisco and Melbourne, 1979.
- 8. M. Henriksen, On a class of regular rings that are elementary divisor rings, Arch. Math. 24 (1973), 133-141.
- 9. R. Hartwig and J. Luh, A note on the group structure of unit regular ring elements, Pacific J. Math. 71 (1977), 449-461.
- 10. W. Klingenberg, Lineare Gruppen über lokalen Ringen, Amer. J. Math. 83 (1961), 137-153.
- 11. P. Menal and J. Moncasi, On regular rings with stable range 2, J. Pure Appl. Algebra 24 (1982), 25-40.
- 12. K_1 of von Neumann regular rings, J. Pure Appl. Algebra 33 (1984), 295-312.
- 13. J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707-713.
- L. N. Vaserstein, On normal subgroups of GL_n over a ring, Lecture Notes in Math., vol. 854, Springer-Verlag, Berlin and New York, 1981, pp. 456-465.
- 15. ____, Bass's first stable range condition, J. Pure Appl. Algebra 34 (1984), 319-330.

- 16. _____, Normal subgroups of the general linear groups over Banach algebras, preprint, Institute for Advanced Study, January 1985; J. Pure Appl. Algebra (to appear).
- 17. $\underline{\hspace{1cm}}$, K_1 -theory and the congruence subgroup problem, Mat. Zametki 5 (1969), 233–244=Math. Notes 5, 141-148.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802 (Current address)

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540