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ABSTRACT. An operator T means a bounded linear operator on a complex

Hubert space H. We give two types of mixed Hadamard's theorems containing

the terms T, \T\ and |T*| as extensions of Hadamard's theorem and mixed

Schwarz's inequality \(Tx,y)\2 < (\T\x,x)(\T*\y,y) for any T and for any x

and y in H. Also we scrutinize the cases when the equalities in these mixed

Hadamard's theorems hold.

1. Statement of the results.

Theorem 1 (Mixed Hadamard's type 1). For any operator T on H and

any xi, x%,..., xn in H, let Gn be defined by

(|T|a;i,a:i)      (Txi,x2)        (Txi,x3)       ■■■       (Txuxn)

(T*x2,xi)    (|T*|x2,x2)    (\T*\x2,x3)     •■•     (\T*\x2,xn)

Gn=    (T*x3,xi)    (\T*\x3,x2)    (\T*\x3,x3)     ■••     {\T"\x3,xn)

(T*xn,xi)    (\T*\xn,x2)    (\T*\xn,x3) | -*-     \^ni *^n J

Then

0<Gn<(\T\x1,xi)l[(\T*\xJ,xJ)

3 = 2

andGn = 0 if and only if Si = {\T\xi,T*x2,T*x3,... ,T*xn} is a system of linearly

dependent vectors if and only if S2 = {Txi, \T*\x2, l^'I^Si ■ ■ ■, |T*|xn} is a system

of linearly dependent vectors. On the right-hand side, equality holds if and only if

(Txi,Xj) =0 for j = 2,3, ...,n and (\T*\xj,xk) = 0 for j < k (J = 2,3,... ,n-1)
or Si contains the zero vector (equivalently, S2 contains the zero vector).

THEOREM 2  (MIXED HADAMARD'S TYPE 2).   For any operator T on H and

any Xi, X2, ■. ■, xn in H, let G2n be defined by

(|T|ii,ii) (Tu,22) (|T|n,i3)     (Txi,xi)---(\T\xí,x2n-i)    (Txi,x2n)

(T*x2,n) (|T*|i2,x2) (T*x2,x3) (\T*\x2,xA) ■ ■ AT*x2,x2n-X) (|T*|x2,i2n)

(|T|l3,Il) (TX3,X2) (|T|l3,I3)       (Tl3,X4)---(|T|l3,I2n-l)      (Tx3,X2n)

G2n= (r*I4,Il) (|T*|X4,I2) (T*X4,X3)(|T*|x4,X4)---(T*X4,X2n-l)   (|T*|x4,X2n)

{\T\x2n-i,Xi) (Tx2n-1, X2) ■

(T*X2n,Xl)     (|r*|x2„,X2)-

■ (|T|x2n-l,X2n-l) (Tx2n-l , X2n)

■ ■ ■ (T*x2n,x2„-i) (\T*\x2n,x2n)
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Then
2n~l

0 < G2n <    Y[  (\T\xJixj){\T*\x3 + l>x] + l)

3 = 1

and G2n = 0 if and only if Si = {|T|xi,T*x2, |T|x3,T*x4,..., |T|x2„-i,T*x2„} is

a system of linearly dependent vectors if and only if

S2 = {Txi,|T*|x2,Tx3,|T*|x4,...,Tx2„_i,|T*|x2n}

is a system of linearly dependent vectors. On the right-hand side, equality holds

if and only if (\T*\x2j,x2k) = 0 for j ^ k, (|T|x2;,-i,X2fc-i) = 0 for j ^ k, and
(Tx2j-i,x2k) = 0 for j,k — 1,2,...,n, or Si contains the zero vector (equivalently,

S2 contains the zero vector).

COROLLARY 1 (MIXED SCHWARZ'S INEQUALITY). For any operator T and

any x, y in H, then

\(Tx,y)\2<(\T\x,x)(\T*\y,y).

The equality holds if and only if \T\x and T*y are linearly dependent if and only if

Tx and \T*\y are linearly dependent.

REMARK. We would like to emphasize that the equality holds if and only if |T|x

and T*y are linearly dependent if and only if Tx and |T*|y are linearly dependent.

One might believe that the equality would hold if and only if |T|x and |T*|y are

linearly dependent. But here we can give a simple counterexample as follows. Let

r.(j;). *=(;) --(i).

Then

\T*\y=(2\=2\T\x,

that is, \T\x and \T*\y are linearly dependent, but

\(Tx,y)\2 = m¿(\T\x,x)(\T*\y,y) = oA

This mixed Schwarz's inequality is discussed in [3, Problem 138] except the case

when the equality holds.

2. Proofs of the results.

In order to show the results, we need the following

THEOREM A. For xi,x2,... ,xn in H, let Gn be the determinant of a square

matrix of order n defined by Gn = \((xj,Xk))\-  Then

0<Gn<||xi||2||x2||2---||x„||2.

On the left-hand side, equality holds if and only if xi,x2,... ,xn are linearly de-

pendent. On the right-hand side, equality holds if and only if Xi,x2,... ,xn are

mutually orthogonal or {xi,x2, ■ ■ ■ ,xn} contains the zero vector.

The right-hand-side inequality in Theorem A is Hadamard's theorem and also

the left-hand-side inequality in Theorem A is well known and can be considered

as a generalization of Schwarz's inequality. Many ingenious and elegant proofs of

Hadamard's theorem have been given by many authors (for example [1, 2, 4, 5]).
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THEOREM B. Let T = U\T\ be the polar decomposition of T where U means

the partial isometry and \T\ = (TT)1/2 with N(U) = N(\T\) where N(S) denotes

the kernel of an operator S.  Then

(i) \T*\ = U\T\U* = UT";
(ii) T' = U*\T*\ is also the polar decomposition ofT* with N(U*) = N(\T*\).

PROOF OF THEOREM B. Theorem B is well known, but the for the sake of

convenience, we cite the proof, (i) As U*U is the initial projection and U*U\T\ =

\T\, so that |T*|2 = TT* = U\T\\T\U* = U\T\U*U\T\U* = (U\T\U*)2, then we
have |T*| = U\T\U" because U\T\U* is positive. Therefore \T*\ = U\T\U* = UTA

(ii) By (i), we have U*\T*\ = U*U\T\U* = \T\U* = T* and U*x = 0 if and only if
UU*x = 0 if and only if \T\U*x = 0 by N(U) = N(\T\) if and only if T*x = 0 if
and only if TT*x = 0 if and only if |T*|x = 0. Then N(U*) = N(\T*\) and U* is

also a partial isometry. So the proof of (ii) is complete.

PROOF OF THEOREM 1. In Theorem A, we replace x\ by |T|1/2xi and xk by

\T\xl2U*xk for k = 2,3,..., n. Then we have the following by Theorem B:

(\T\l'2xi,\T\ll2U*xk) = (U\T\xi,xk) = (Txuxk)    for k = 2,3,... ,n,

(|T|1/2í7*xJ,|T|1/2[/*xfc) = (í/|T|í/*x„xfc) = (|T*|xJ,xfc)    for j,k = 2,3,... ,n.

By Theorem A and Theorem B, we have

0 < Gn < || iTl^xilHl |T|1/2[/*x2||2 • • ■ || \T\l'2U*xn\\2

= (\T\xi,xi)(\T*\x2,X2)---(\T*\xn,xn).

Gn = 0 if and only if \T\1/2xï,\T\1/2U*x2,..., ¡T^^U'xn are linearly dependent

(by Theorem A) if and only if |T|xi, \T\U*x2, ■ ■ ■, \T\U*xn are linearly dependent

(by the positivity of {T]1/2) if and only if Si = {\T\xuT*x2,T*x3,.. .,T*xn) is a

system of linearly dependent vectors (by Theorem B). Then

USi = {U\T\xi,UT*X2,UT*x3,..., UT*xn)

is a system of linearly dependent vectors if and only if

S2 = {Tx1,|r*|x2,|T*|x3,...,|T*|x„}

is a system of linearly dependent vectors (by Theorem B).

Conversely assume that S2 is a system of linearly dependent vectors. Then

U*S2 = {U*Txi,U* \T* \x2, U* \T* \x3,...,U* \T* |x„} is a system of linearly depen-
dent vectors if and only if Si = {|T|xi,T*x2,T*xv3,... ,T*x„} is a system of linearly

dependent vectors by Theorem B, so that Si is a system of linearly dependent vec-

tors if and only if S2 is a system of linearly dependent vectors. The proof of equality

for the right-hand side follows from Theorem A and the argument stated above in

the first half of the proof. So the proof of Theorem 1 is complete.

PROOF OF THEOREM 2. In Theorem A we replace x2k by |T|1/2[/*x2fc for

k = 1,2,... ,n and x2fc_i by |T|1/2x2fc-i for k = 1,2,... ,n. Then by Theorem B

we have

(|T|1/2(7*x2j,|T|1/2í/*X2fc) = (U\T\U*x2j,x2k)

= (|T*|x2i,x2fc)    for j,k= 1,2,...,n,

(|r|1/a*v_i>|r|1/9£riafc) = (u\T\X2j-i,x2k)

= (Tx2j-i,x2k)    for j, k = 1,2,..., n.
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By Theorem A and Theorem B, we have

0 < G2n < || iTl^xilHl iTl^C/'x.H2 • • • || ITI^x^iIHI \T\^U*x2n\\2

= (|r|xi,xi)(|T*|x2,x2) • • • (|T|x2„_i,x2n_i)(|T*|x2„,x2„).

Since the proofs of the left-hand side and the right-hand side of the equality are

given in the same way as in the proofs of Theorem 1, we omit them.

PROOF OF COROLLARY  1. The proof follows from the inequality in Theorem

1 or Theorem 2.
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