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A NOTE ON REAL INTERPOLATION
OF HARDY SPACES IN THE POLYDISK

BJÖRN JAWERTH AND ALBERTO TORCHINSKY1

ABSTRACT. The atomic decomposition for the Hardy spaces Hp of the prod-

uct of upper half-spaces is used to characterize Peetre's /C-functional for two

such spaces.

0. Introduction. We present an application of the atomic decomposition for

the Hardy spaces Hp of the product of upper half-spaces. Our main results are the

computation of Peetre's Ä"-functional for two such spaces and the fact that these

spaces are amenable to the method of real interpolation. We also include some

applications to Hardy's inequality (for the Fourier transform) and to fractional

integration.

1. The if-functional. In order to simplify the presentation of the results, we

work exclusively with the domain R^ x R+ and its distinguished boundary R2.

We will use the same definitions and notations as in R. Fefferman and S. Y. A.

Chang [1, 2]. Points in R2 x R2 are denoted by (y,t), where y = (yi,y2) G R2

and t = (ti,t2), ti,t2 > 0. We reserve the notation <p(u) for an even, real-valued,

C°°(R) function supported in [-1,1] such that

for sufficiently large m to be specified.   With this function <p we associate the

two-parameter dilation

* , x    <p(yi/ti)<p(y2/t2)        .   . ^ n
®t(y) =-—-,      íi,í2>o,

tit2

defined on R2. For a tempered distribution / e S'(R2) we put f(y,t) = / * $t(y)-

Further, if x = (xi,x2) €E R2, T(x) denotes the product cone T(xi) x T(x2), or

r(*) = {{VA)- \xi — 2/11 < h, |*ij -y2| < t2}.

We can now introduce the double S-function of / defined by

5/(xH(//r(,)l/("'í)|2^^!í)1/2-

It is a known fact that for m > 0 and 1 < p < +oo,

I|S/||lp(R2)   <  C7p||/||LP(R2).
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*1

(K(t, f),K(t, f)/t)  =   ({rï (£)}    °,   (rEn „  (J) }   l)
popi r popi r

///////,

Figure 1

It is also well known that we can introduce the Hardy spaces i/|(R2 x R2 )

as {/ G S'(R2): ||S/||¿p(r,2) < +00} (modulo a simple normalization). Here 0 <

p < +00 and ||S/||lp, with m ~ (1/p - 1) for 0 < p < 1, gives one of the possible

equivalent Hp "norms" ||/||//p- In fact, the class Hp is independent of the choice

of $ (see Gundy-Stein [5] and Merryfield [9]).

Finally, we recall the definition of the if-functional. Given / e HPo + HPl and

t > 0, put

K(t,f;Hp\Hp>) =     inf    max(||/0||ffPo,t||/i||i,Pi ).
/=/o+/i

A similar definition holds for two Lp spaces. We have

THEOREM A.   Let 0 < p0 < pi < +00.  Then

K(t,f;Hp°,Hpi)*K(t,Sf;Lp°,LPi).

PROOF. From the subadditivity of the S-function it follows at once that

(1.1) K(t,Sf;LP0,LPi) < CK(t,/;HP0,HPi).

To prove the converse, we put

EP0Pl(f,Hp°,Hp>)=     inf     maxdl/ollSpo.ll/iHSpJ,
f = JO + Jl

and similarly for Lp°,LPl. By looking at the Gagliardo diagram T(f) — {(x0, xi) €

R-2: / = /o + /1 with ||/o||ffpo < x0, II/iIIhpi < *i} (see Figure 1), we easily

see that the right continuous inverse of {EPoPl(f¡t;HPo,í/pi)}popi/(pi-po) (m a

function of t) is K(i,/;HPo,HPl)/tPl^PlP^ and similarly for LPo,LPl (cf. Jawerth

et al. [6]). Now,

EP0Pl(t;Lp°,L.A  < f       \f\p°dx+[       \frdx
Ve /     J\f\>i J\f\<i

<EP0Pl(cfl ¿P0,¿P1)

for some constant c independent of /. Hence, to prove the inequality opposite to

(1.1), we need to show that

EP0P1 (/; H">,W*)<c\[       Sf(xr dx+ [       Sf(x)^ dx) .
(Jsf>l Jsf<i )
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Next, by the reiteration result of Holmstedt [1], it suffices to consider the case

0 < po < 1, 2 < pi < +oo. It is at this point then the atomic decomposition of

Chang and Fefferman [2] (also Cohen [4]) plays a crucial rôle. For each k 6 Z+ let

nk = {Sf > 2k},

Ho = {all dyadic rectangles R such that |i2 Pi Oo| < |-R|/2},

Zk = {all dyadic rectangles R such that \R n 0*_i| > |JR|/2, \R n fifc| < \R\/2} ,

k > 1.

For a dyadic rectangle R = I x J, let

R+ = {(y,t)eR2+xR2+:yeR, |/| < h < 2|7|,  \J\ < t2 < 2] J]}.

AlsoA+=UnGÄfc-R+- Put

/o(*) = E//    /(y-*)**(*-y)dy^i^ = EM*)

and

A(*)= //    f(y,t)*t(x-y)dyd^.
JJa+ tit?

That / = fo + fi, in 5', follows readily by taking Fourier transforms, since

/0   <p(u)2 du/u = 1. To complete the proof, we consider two claims, namely,

\\fo\\PH°*0 < C [ Sf(x)p°dx
J{Sf>l/2}

< C f f Sf(x)P0 dx+ [ Sf(x)Pl dx)
\J{Sf>l} J{Sf<l} J

(1.2)

and

(1.3) Ui\\%*i<cf Sf(xrdx.
J{Sf<l}

The proof of (1.2) is achieved by showing that for each k the normalization

of 6fc(x) given by C6fc(x)/2fe|fi/c_i|1'/po yields a p0-atom (in the sense of Chang-

Fefferman [2]). This would imply that

H/ölig«, < C7^2fc^|nfc_i| < C f Sf(x)p"dx
fc>o J{sf>im
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and thus give (1.2). We need to verify that

(i)        ||6fc||L2 <C72fe|nfc_i|1/2,

(ii)        suppbfc Ç ñfc_i =   y   4R,

ReZk

(üi)       bk=  E   if    f{y,mt(x-y)dyâ^=  E h,R,
ReRkJjR+ hh        ReHk

(iv) / bk,ii(xi,x2)x™ dxi =  / bk,R(xi,x2)x2ndx2 = 0

for all m up to ~ (1/po — 1),

(v)        supp6fe,ñ Q 4Ä,

(vi)       o^isinC1    and    ||6fc,Ä||L- < dÄ(C2*|nfc_i|1/P°),

d
dxi

d

dx2

h,R

bk,R

<dR

<dR

C2fc|nfc_i|1/po

C2fc|nfc-i|1/po
R = I xJ,

and, finally,

(vii) E d2R\R\<C\nk-i\^2lpA
ReHk

The proof of these assertions is similar to that of [2, Theorem 1], where it is done

for po = 1- Let us see that (i) holds. For this purpose pick g G L2 with \\g\\L* = 1-

Then

/ bk(x)g(x)dx\ =   // +f(y,t)g(y,t)dy   j~t 2

< C//a+[¿¡  {zGR2:M^ok.l,z)>^, ZGÜÍ, (y,i)€0(2)J

x\f(y,t)\\g(y,t)\dy
dti dt2

Í1Í2    :

where M denotes the strong maximal function. By Tonelli's theorem and Schwartz's

inequality this last integral does not exceed

/J{M(xnk_1)>imnnk

Sf(z)Sg(z)dz< 7 i/2}nn=

<C2k\{M(Xnk.l)>12}\1/2-

\  1/2

Sf(z)2dz)      \\Sg\\L,

Hence, by the strong maximal theorem,

\l bk(x)g(x)dx <C2k\Ük-i\l/2,
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which gives (i). The proofs of (ii)-(v) are trivial. As for as for (vi) and (vii), clearly

\\bk,R\\L-<c[[    \f(y,t)\dy^*/\R\
JJr+ tit2

<C\R,r/2(JJjf(y,t)\2dyd-^y2,

and arguing as above we see that

E   If    \f(v,t)\2dy^<cf Sf(z)2dz
ReRkJjR+ ht2 ^{M(xnk_1)>i/2}nn=

< C722fc|fifc_i|.

After the proper normalization this gives (vi)-(vii), except for the estimates of the

partial derivatives of bk,R, which we leave for the reader to verify.

The proof of (1.3) is similar.   For any function h with ||ft||z,j>i = 1 we find, as

above,

j fi(x)h(x)dx   < H    \f(y,t)\dy^
dti dt2

L*2

< C f   Sf(z)Sh(z) dz<C\ [   Sf(z)Pl dz)
Jn<0 \Jn'0 J

This implies (1.3) and completes the proof.

A few remarks about Theorem A: Let Mf(x) = supjytt)er(x) \Pt * f(y)\ be the

nontangential maximal function. If we use the proof of the atomic decomposition,

due to J. M. Wilson [10], which is based on the nontangential maximal function

rather than on the square function, an argument entirely analogous to the one

above gives

Theorem A'. Let 0 < p0 < pi < +oo. Then

K(t, f;HP0,HP1 ) « K(t, Mf;LPa,LPi).

Moreover, as an immediate consequence of Theorem A (or A') we have the

following result of Lin [8].

Corollary B. Let0 < p0 < pi < +oo andi/p = (i-9)/p0+9/pi, 0 <$< 1.
Then (HPo, HPl )gp = Hp (with equivalent quasinorms).

Let us mention two simple applications of Corollary B.

In [6] it is shown that for any p0,0 < p0 < 1, and / G Hpo(R\ xRJ),

i/ui,6)i < ci6r/po-%ii/p°-^/iitfPo.

Let dp(Çi,&) = dÇi (¿6/161161, and let 37(£i,6») - |6l 161/(6, 6)- Then the
above estimate means that T is bounded from HPa to LPo-°°(dp), 0 < po < 1. On

the other hand, by Plancherel's theorem, T is bounded from H2 into L2. Hence,
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using Corollary B and the Marcinkiewicz interpolation theorem, we obtain

Proposition C (Hardy-Littlewood Imbedding Theorem). LetO<
p < 2 and f G Hp(Rj x Rf).  Then

\ i/p
1/(6,6)lpl6r2l6r2 <*&<*& J     <c||/||Hp.

In a similar way we can prove results concerning the modified Riesz potential 7Q

of order a—that is, the operator given by the inverse Fourier transform of

(4/H6,6) = /(6,6)l6rQl6r,      o < a < +00.

Proposition D.  LetO < p < q < +oo, 0 < a < 1/p, and 1/g = l/p - a.

Then\\Iaf\\Hq <C\\f\\HP.
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