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A NOTE ON INTEGRAL MEANS OF THE DERIVATIVE
IN CONFORMAL MAPPING

N. G. MAKAROV

ABSTRACT. There exists a number po > 1/3 such that among the derivatives

of univalent functions, that of the Koebe function ceases to have the greatest

order of growth of Lp-means for all p < po ■

Let D denote the unit disc. We consider the lacunary power series

b(z) = Y, z2"    for zGD.
i/>i

It is well known (see, e.g., [7, Chapter 10, §2]) that the primitive

h(z) —  /   exp I —-b(z) > dz

represents a univalent in D function. We shall study the growth of the integral

means

IP(r,h')= i    \ti(relt)\pdt        (0 < r < 1).
J —IT

THEOREM.   There exists a positive number c such that if0<p< 1, then

(1) /p(r,/i')>(l-r)-<

In particular, if p < 1/3 + c/27, then

Ip(r,h')^0((l-rY~Zp)    asr-tl-.

As a motivation, we shall briefly outline the background. Let / be an arbitrary

univalent in D function.

(i) J. Clunie and Ch. Pommerenke [2] have proved that for some absolute con-

stant C and for all p > 0,

(2) Ip(r,f') = 0((l-r)-Cp2)    asr-+l-.

In fact, they have established (2) with C = 9, and recently Ch. Pommerenke [8]

has considerably improved this bound. Our theorem shows that as for the order,

the estimate (2) is asymptotically sharp as p —> 0.

(ii) For positive p, the distortion theorem implies the trivial estimate

IP(r,f') = 0((l-r)-3p)    asr-1-.
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On the other hand, the Koebe function k(z) = z(l - z) 1, extremal for a large

class of problems about integral means, satisfies

/pM'^a-r)1-3"

for p > 1/3. J. Feng and T. MacGregor [4] have shown that if p > 2/5, then

(3) Ip{r,f') = 0(Ip(r,k'))    asr^l-.

The latter is certainly false for p < 1/3 because there exists a univalent function

with the derivative having a radial limit on no set of positive measure. The sharp

upper bound for Ip(r, /') seems to be unknown for p < 2/5. In particular, it was

asked (see, e.g., [6, Problem 4.3 and 3, p. 229]) whether (3) holds for all p > 1/3.

Our theorem settles this question negatively.

In the proof of the theorem we make use of Hausdorff measures. The a-dimen-

sional Hausdorff measure of a plane set E is denoted by A.a(E), and A.^(E) stands

for the infimum of Yl r? taken over all coverings of E with discs of radii r3. As is

known, \a(E) = 0 iff A~(£) = 0.

LEMMA. Let S < 1/10. There exists a Borel subset Eq, C &D of Hausdorff

dimension greater than 1 — 562 such that

..    .  ,    Im b(rç) 1.
hmínf j--; > -6,    ÇG E0.
r->i-  |log2(l -r)\      3

The lemma is a slight quantitative amplification of a result due to J. Hawkes [5,

§4]-
PROOF OF LEMMA. On the segment [0,1] we define the functions

n

Sn(t) = J^sin(21'-27rt).
i/=i

It is easy to verify that if n = [| log2(l — r)|], then

|Im b(re2vti) - Sn(t)\ < const.

On [0,1] we also consider the probabilistic measure ¡j, with respect to which the

functions t h-> t„ (= the vtb figure in the diadic expansion of t) are independent

random variables with the distribution

u{t: tv = 0} = \ + 6,        n{t:tv = l}=\-8.

The measure u is invariant under the diadic transformation T:

T(t) = 2i        (mod 1),

and ergodic with respect to it (see [1, Example 3.5]). By the ergodic theorem, for

/x-a.e. t

11™ f1
-Sn(t) = - V aia(2irT'/t) -» /   sin(27ri) dp.(t).
71 n „=i ^o

By the Eagleston-Billingsley theorem [1, §14], the measure ¡i is absolutely contin-

uous with respect to AQ provided

Ent T
a<-hT2-'
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where

Ent T= (i +<5)|ln(i +6)\ + (* -¿)|ln(§ - S)\

is the entropy of T. It remains only to note that

Ent T        1
1-

ln2        ln4

1

ln(l-4¿2) + 2¿ln[±-|

<
In 4

-4o2 +
8<52    1

l-2¿
<5¿2

1  3

provided 6 < 1/10 and that

f1 Í1!2 \/2
/   sin(27rí)(i/z(í) = 26 /      sm(2nt) dp,(t) > 26^—u
Jo Jo 2

= ^8(l + 28)2(l-28)>\è.

PROOF OF THEOREM. Let a = 1 - 5<52. Replacing the set E0 obtained in the

Lemma by a suitable subset E of positive a-dimensional Hausdorff measure, we can

assume that

Im6(rc)>¿6|log2(l-r)|

for ç G E and r > r^. By E^ we denote the (1 — r)-neighbourhood of E. Since

\b'(z)\ < const(l - l^l)"1

we have the estimate

Im b(rç) > |¿|log2(l - r)| - const,        c G E{r),

which implies

(4) |/i'(rc)|=exp|ilm6(rc)j>const(l-r)-¿/12,        ÇGE(r).

Let A = A~(J5). Then

(5) E(r)\>^(l-r)
l-a

In fact, E(r) consists of disjoint open intervals of length at least 1 — r. Subdivide

E(r) in a union of N disjoint intervals (not necessarily open) of length < 2(1 — r)

and > (1 - r). Then

A < JV[2(1 - r)\a < 2N(1 - r)a,        N > ¿A(l - r)~a,

\E{r)\>N(l-r)>\\(l-ry-a.

Inequalities (4) and (5) yield

J —:

\h'(relt)\pdt > const|£(r)|(l - r)~Sp/12

= const(l-r)5s2-Sp/12.

With 8 = p/120, maximizing the exponent, we obtain (1).
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