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LARGE-TIME BEHAVIOR OF SOLUTIONS

TO CERTAIN QUASILINEAR PARABOLIC EQUATIONS

IN SEVERAL SPACE DIMENSIONS

PATRICIA BAUMAN AND DANIEL PHILLIPS1

Abstract. We consider the Cauchy problem, u, + div/(w) = Am for x e R", / > 0

with u(a\0) — u0(x). For n = 1, suppose /" > 0 and / \u0 - <l>\dx < oc where <f>

is piecewise constant and <¡>(x) -» u+ (u~) as x -* +00 (-00). A result of Il'in and

Oleinik states that if <¡>(x - kt) is an entropy solution of u, + div/(w) — 0, then

u(,v, t) approaches a traveling wave solution, U(x — kt), as t -» 00, with S(x) -» «+

(u~) as x --» + 00 (-00). We give two examples which show that this result does not

hold for n > 2.

This work concerns the asymptotic behavior of the solution to the Cauchy

problem,

(1) u, + div/(w) = Aw    forxeR",/>0,

(2) u(x,0) = uo(x)    forxeR",

where /e C2(R;R"), and n > 2. We assume throughout the paper that u0 is a

bounded function which approaches a piecewise constant state as |jc| -» oo in the

sense that /K. \u0 - <p\dx < oo, where

(3) 4>(x) = a • xa(x) + b • Xk-\o<»

with a > b, and ñ is a connected open subset of R" (with piecewise smooth

boundary if n > 2). We also assume without loss of generality that f(a) = f(b) = 0,

since the transformation x = x - kt, i = t, where k = [f(a) - f(b)]/(a - b), yields

an equation of the form (1) which satisfies this condition.

For n = 1, a result of Il'in and Oleinik [3] states that if / is strictly convex and

♦<*>-*<*)-{£ xxVc\

for some c g R, then lim,.,^ u(x, t) = ü(x) exists and satisfies

(4) div/(«) = Aù    inR",

(5) "(*) ~ <p(x) ~* 0   as jjc| -> oo, and

(   (ü- <t>)dx= f   (u0- 4>)dx.
JR" •/R"

Received by the editors February 4, 1985.

1980 Mathematics Subject Classification. Primary 35L65; Secondary 35K55.

'Supported by the National Science Foundation, Grant No. 8201036.

®1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page

237



238 PATRICIA BAUMAN AND DANIEL PHILLIPS

Note that any function <p of the form (3) satisfies

(6) u, + div/(u) - 0.

Also since / is convex, the functions {<pc} are precisely those of the form (3) which

satisfy the entropy condition (see (E) below). Thus in one space dimension,

lim,^^ u(x, t) exists and satisfies (4) and (5) whenever (p satisfies (E).

It is easy to see that the converse is also true. That is, if lim,.,^ u(x, t) exists and

satisfies (4) and (5), there is a function ip of the form (3) which satisfies the entropy

condition and

/   | <£ — tp | dx < oo.
•'R

The entropy condition for solutions of (6) when n ^ 1 was formulated by

Kruzkov and Vol'pert in [4 and 6]. When applied to <p as in (3), it can be stated as

follows:

(E) (f(c),n(x))^0   for a\\c*Ê(b, a)

//""'-almost everywhere on 9fi, where n(x) is the outward-pointing normal to ß at

x.

In this paper we give two examples which demonstrate that Il'in and Oleinik's

result on the large-time behavior of solutions to (1) and (2) fails in dimension n > 2.

In both examples, / satisfies the strong convexity condition formulated by Conway

in [1]. (In fact, we take / = (0,... ,0, F) with F strictly convex.) We take u0 = <f>

where <p has the form (3) and <i> satisfies (E).

In our first example, ü(x) = lim,.,^ u(x, t) exists and satisfies the elliptic equa-

tion (4), but does not inherit the asymptotic values of <i> as \x\ -* oo, as in (5). In our

second example, « fails to exist.

Example 1. Let f(u) = (0,0,..., F(u)) where F(u) is a smooth strictly convex

function with F(0) = F(l) = 0. Set 4>(x) = Xa(x) where

S2= [x = (x',x„): xn< -\x'\).

One readily checks that <f> satisfies condition (E).

We take u(x, t) to be the solution of (1) and (2) with u0(x) = $(*)• Such a

solution will exist and be unique in the class

C([0,oo);L1loc(R")) nL°°(R" + 1)nC2(R" x(0,oo))

and satisfies 0 < u < 1. This can be seen by considering a sequence of smooth,

bounded functions Uq(x) -» <b(x) in L^R"). Taking the corresponding solutions

of the Cauchy problem [5, V, Theorem 8.1] and arguing as in [6, §17.2], one obtains

both   existence   and   uniqueness   in   the   indicated   class.   We   will   show   that

hrn,-oo"(*'0 s °-

Consider first for the sake of comparison the function gd(xn, t) satisfying

(7) DX:Xigd = D,gd + Dx(F(gd))    for -» < xn < oo, t > 0,

t      o\     I1'        X"<d>
g"(*"'°)=\0,        xn>d.
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From [3] the functions

/-l' /«OO
(1 - gd(s,t))ds,        /     gd(s,t)ds

- oo Jy

exist, are continuous for y e R and t > 0, and together with

(l-gd(~y,t)),       gd(y,t)

tend to zero as y —> +00 uniformly in t.

Set f^/(JCn, t) = f™ gd(s, t)ds; this is continuous for t ^ 0 and satisfies

(8) DXnXVd = -Fi-D^Fj + Z>,^,        Vd(xn,0) = (d - x„) +.

Moreover

#,(*,,) s Um &,(*„, 0    and    Vd(x„) = lim Vd(x„,t)
t-* 00 /—♦ 00

both exist and are solutions to (7) and (8); they are uniquely determined respectively

by

/OC f(j „ /«OCgd(s)ds+        (gd(s)-l)ds = 0,    and    Vd(x„) = /   gd(i)ds.
J -oo .v„

Finally the convergence to gd is uniform in xn.

From the maximum principle

0 «; u(x,t) «s g0(xn,t)    forjíeR", i^O.

Thus i/(x, t) = /x°° m(x',í, i) ds is well defined and satisfies

AU= -F(-DXU) + D,U,        U(x,0) = ( —|jc'| — jc„) + .

For any d < 0, wd = U - Vd satisfies

Awd= a(x,t,d)Dxwd+ Drwd    and    wd(x,0) ¿Z-d-X([x>\K-d}(x)-

Again using the maximum principle, wd < h(x', t) for t ^ 0 where

Ax,h = Drh    forx' g R""1, / > 0

and

A(x',0)--«f-x{M<-rf)(*'),        x'g«""1.

Hence

ÏÏnT t/(jc,í)< ^(*„) + \im h(x',t)= Vd(x„).

Since gd(xn, t) = g0(xn - d, t), Vd(xn) -» 0 as d ~» -oo. From parabolic estimates

it follows that

u(x,t) = ~DxU(x,t)-> O    así -> oo.

Example 2. Consider/(«) as above and w0(.x) = <¡>(x) = Xa(x) where

ñ = ((jt',jcj: x„ < i(x')}    with ^ g CHR"-1),-! < ^ < 0,

and

lim r1"/"       V¿x' #  lim   í       t//í/x'.
^oo       vi<' .~m "VKr1*1«' ,—"I
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Again one can check that (E) is satisfied. We show that lim,^xu(x, t) cannot exist

pointwise almost everywhere on R".

Using the previous remarks on gd we see that

g-i(x„,t)*Z u(x,t) ^g0(x„,t)

and that the function

/0 /«oo
(1 - u(x',s,t)ds - 1     u(x',s,t)ds

-oo J0

is well defined and satisfies

áx,U = D,U   for t > 0, x' e R"   \

U(x',0)=-ip(x')    forx'G R"1.

If lim,^^ u(x, t) is well defined, then lim,_00l/(jc', t) = Ü(x') exists. Hence Ü is a

bounded harmonic function and thus a constant. By a result of [2] this is true iff

lim rl"f       \pdx'   exists.
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