A NOTE ON A LEMMA OF ZO

R. FEFFERMAN

ABSTRACT. In this article we prove that a general class of singular integrals on product spaces maps $L \log L$ boundedly to weak L^1 . We use this to prove a theorem about maximal functions which generalize the strong maximal function.

Introduction. In [1] Zo proved the following result:

LEMMA. Suppose that $\{K_{\alpha}(x)\}_{\alpha \in \mathscr{A}}$ is a collection of kernels on \mathbb{R}^n satisfying

(1)
$$\int_{\mathbb{R}^n} |K_{\alpha}(x)| dx \leqslant C \quad \text{for all } \alpha \in \mathscr{A}$$

and

(2)
$$\int_{|x|>2|h|} \sup_{\alpha \in \mathscr{A}} |K_{\alpha}(x+h) - K_{\alpha}(x)| dx \leq C \quad \text{for all } h \neq 0.$$

Then for $T * f(x) = \sup_{\alpha \in \mathscr{A}} |f * K_{\alpha}(x)|$, we have

$$m\{T^*f(x) > \lambda\} \leqslant (C/\lambda)\|f\|_{L^1(\mathbb{R}^n)}$$
 for all $\lambda > 0$.

The idea behind the proof of this result is the Calderón-Zygmund decomposition [2, 3] of an L^1 function. Our purpose here is to extend the lemma of Zo to product spaces, and the machinery used in doing this is given in [4 and 5]—namely, Journé's geometric lemma, together with an atomic decomposition for $L \log^+ L$ functions which closely resembles the atomic decomposition for H^1 functions in the "product setting". In order to carry out the extension we desire, we shall first prove (as is needed in the classical case) a kind of Calderón-Zygmund theorem for product spaces. This is announced in [5], and we shall indicate here the ideas which must be added to those in [5] in order to prove such a theorem. After this is done, we shall proceed to state and prove Zo's Lemma for product spaces.

A Calderón-Zygmund theorem. We shall begin with some notation. Suppose that T is an integral operator with kernel K on R^n . This means that $Tf(x) = \int_{R^n} K(x, y) f(y) dy$ for $x \in R^n$. Suppose that T is bounded on $L^2(R^n)$ with operator norm $||T||_{L^2, L^2}$ and that K satisfies

(*)
$$\int_{|x-y|>\gamma|y-y'|} |K(x,y)-K(x,y')| dx \leqslant C\gamma^{-\delta} \text{ for some } \delta > 0,$$

Received by the editors February 12, 1985.

1980 Mathematics Subject Classification. Primary 42B20.

Key words and phrases. Maximal operators, $L \log L$, singular integrals.

and every $\gamma \ge 2$. Then we define the Calderón-Zygmund norm of T, $||T||_{CZ}$, by

$$||T||_{CZ} = ||T||_{L^2, L^2} + \inf\{C > 0 | * \text{ holds}\}.$$

Now suppose that $K(x_1, y_1, x_2, y_2)$ is a kernel defined for $x_1, y_1 \in \mathbb{R}^n$ and $x_2, y_2 \in \mathbb{R}^m$. For each fixed x_1 and y_1 we define the integral $\tilde{K}^1(x_1, y_1)$ which acts on functions on \mathbb{R}^m as the operator whose kernel (which we also denote $\tilde{K}^1(x_1, y_1)(x_2, y_2)$) is given by $\tilde{K}^1(x_1, y_1)(x_2, y_2) = K(x_1, y_1, x_2, y_2)$. We define $\tilde{K}^2(x_2, y_2)$ similarly. Then we have the following result [5]:

THEOREM. Let $K(x_1, y_1, x_2, y_2)$ be defined for $x_1, y_1 \in \mathbb{R}^n$ and $x_2, y_2 \in \mathbb{R}^m$, and let

$$Tf(x_1, x_2) = \iint_{\mathbb{R}^n \times \mathbb{R}^m} K(x_1, y_1, x_2, y_2) f(y_1, y_2) dy_1 dy_2$$

for $(x_1, x_2) \in \mathbb{R}^n \times \mathbb{R}^m$. Assume that (1) T is bounded on $L^2(\mathbb{R}^n \times \mathbb{R}^m)$.

(2)
$$\int_{|x_1-v_1|>\gamma|y_1-v_1'|} \|\tilde{K}^1(x_1,y_1)-\tilde{K}^1(x_1,y_1')\|_{CZ} dx_1 \leqslant C\gamma^{-\delta} \quad \text{for all } \gamma \geqslant 2,$$

(3)
$$\int_{|x_2-y_2|>\gamma|y_2-y_2'|} \|\tilde{K}^2(x_2,y_2)-\tilde{K}^2(x_2,y_2')\|_{CZ} dx_2 \leq C\gamma^{-\delta} \quad \textit{for all } \gamma \geq 2.$$

Then for functions $f(x_1, x_2)$ supported in the set $\{(x_1, x_2) | |x_i| < 1, i = 1, 2\}$ we have the estimate

$$m\{(x_1, x_2)||x_1| \le 1, |x_2| \le 1, |Tf(x_1, x_2)| > \lambda\} \le (C'/\lambda)||f||_{L \log^+ L}.$$

PROOF. Given $f(x_1, x_2)$ supported in $\{|x_1| < 1\} \times \{|x_2| < 1\} = S$, we may write f (in S) as $f(x_1, x_2) = f_1 + f_2(x_1) + f_3(x_2) + f_4(x_1, x_2)$, where f_1 is constant, $\int_{|x_1| < 1} f_2(x_1) dx_1 = 0$, $\int_{|x_2| < 1} f_3(x_2) dx_2 = 0$, $\int_{|x_1| < 1} f_4(x_1, x_2) dx_1 = 0$ for all x_2 , $\int_{|x_2| < 1} f_4(x_1, x_2) dx_2 = 0$ for all x_1 , and $||f_i||_{L \log L} \leq C||f_i||_{L \log L}$ for $i \leq 4$. To handle f_1 , of course, we may use the L^2 boundedness of T. To handle f_2 and f_3 , we proceed as follows: Identify $f_2(x_1)$ with a function of x_1 with values in $L^2(dx_2)$ which happen to be constant on $|x_2| < 1$: $\tilde{f_2}(x_1)(x_2) = f_2(x_1)\chi_{|x_2| < 1}(x_2)$. Then $\tilde{f_2}$ is a function in H^1 of the x_1 variable with values in L^2 . By the vector valued classical Calderón-Zygmund theory it follows that for $\tilde{T}\tilde{f_2}(x_1) = \int \tilde{K}^1(x_1, y_1)\tilde{f_2}(y_1) dy_1$, we have $\tilde{T}\tilde{f_2} \in L^1$ with values in L^2 . Restricting our attention to $\{|x_2| < 1\}$, we see that $\tilde{T}\tilde{f_2}$ belongs to L^1 with values in $L^1(|x_2| < 1; dx_2)$, and this implies that Tf_2 belongs to $L^1(S)$.

We now handle the main term, which is $T(f_4)$. We assume $||f_4||_{L\log L} = 1$. We first obtain an atomic decomposition of f_4 , proceeding as in the H^p theory in [5]. Here, because the area integral of f_4 (with respect to a function ψ), $S_{\psi}(f_4)$ is in Weak L^1 , applying the same argument as in [5] we obtain a decomposition $f_4 = \sum_{k=-\infty}^{\infty} a_k$, where the a_k are atoms with the following properties: There exists a constant

 $C > 10^{10}$ so that

- 1. a_k is supported in an open set Ω_k with $m(\Omega_k) \leq 1/C^k$,
- 2. each a_k can be further decomposed as $\sum_R \alpha_{k,R}$, where $\alpha_{k,R}$ is supported in the double of the maximal dyadic subrectangle $R \subseteq \Omega_k$, has mean value 0 in each of the x_1 and x_2 variables separately, and

$$\sum_{R} \|\alpha_{k,R}\|_{L^{2}}^{2} \leq C^{k}, \qquad \|a_{k}\|_{L^{2}}^{2} \leq C^{k}.$$

Now given $\alpha > 0$, we wish to prove that

$$m\{(x_1, x_2) \in S ||T(f_4)| > \alpha\} \leq (C/\alpha) ||f_4||_{L \log L}(S).$$

To do this, suppose that α satisfies $C^N < \alpha \leqslant C^{N+1}$. Then, since

$$\left\| \sum_{k=-\infty}^{N+1} a_k \right\|_2 \leqslant \sum_{k=-\infty}^{N+1} \|a_k\|_2 \leqslant AC^{N/2} \leqslant A'\alpha^{1/2},$$

for some constants A, A', we have

$$m\left\{\left|T\left(\sum_{k=-\infty}^{N+1}a_k\right)\right|>\alpha\right\}\leqslant \frac{C'}{\alpha^2}\left\|\sum_{k=-\infty}^{N+1}a_k\right\|_2^2\leqslant \frac{C''}{\alpha}.$$

To handle $T(\sum_{k=N+2}^{\infty} a_k)$, we consider the atom a_k , k > N+1, along with its fine structure. a_k is supported in Ω_k , whose measure is at most $1/C^k$ and can be written as $a_k = \sum_R \alpha_{k,R}$, where R is a maximal subrectangle of Ω_k . In [5] (see also [4]) it is shown how to construct rectangles $\hat{R} \supseteq R$ with the properties

(*)
$$m(\bigcup \hat{R}) \leq Am(\Omega_k)$$
 and $\sum_{R} \int_{c_{(\hat{R})}} |T(\alpha_{k,R})| dx \leq A$.

If the reader examines the proof of (*), it will be clear that if we dilate each \hat{R} by a factor of $(C/100)^{(k-N)/4(n+m)}$ to produce \hat{R} , then

$$(**) m\left(\bigcup_{\hat{R}}\right) \leqslant A\left(\frac{C}{100}\right)^{3(k-N)/4} m(\Omega_k) \leqslant AC^{-1/4(k-N)} \frac{1}{\alpha}$$

and

$$\sum_{R} \int_{C_{i,k}} |T(\alpha_{k,R})| dx \leq AC^{-\delta'(k-N)} \quad \text{for some } \delta' > 0.$$

(In (*) and (**) R runs through the maximal subrectangles of Ω_k .)

Let us now sum the estimates of $m(\bigcup \hat{R})$ over all k > N. This tells us that $m(\bigcup_{k>N}\bigcup_{R\subseteq\Omega_k;\ R\text{ maximal }}\hat{R}) \leqslant A'/\alpha$.

Summing the second estimate of (**) over k > N produces

$$\int_{c_E} \left| T \left(\sum_{k > N} a_k \right) \right| dx \leqslant A',$$

where $E = \bigcup_{k>N} \bigcup_{R \subseteq \Omega_k; R \text{ maximal}} \hat{R}$. Applying Chebychev's estimate, we complete the proof that $m\{|T(f_4)| > \alpha\} \le A/\alpha$, since

$$m\left\{\left|T\left(\sum_{k>N}a_k\right)\right|>\alpha\right\}\leqslant m(E)+\frac{1}{\alpha}\int_{c_E}\left|T\left(\sum_{k>N}a_k\right)\right|dx.$$

A Zo lemma. Now we shall prove a product version of Zo's lemma. To do this, we require some notation. For a kernel $K(x_1, x_2)$ on $R^n \times R^m$ recall that we denote by $\tilde{K}^1(x_1)$ the operator which acts on functions of the x_2 variable by convolving with $K(x_1, \cdot)$. $\tilde{K}^2(x_2)$ is defined similarly. Suppose that we are given a collection of kernels $\{K_\alpha\}_{\alpha \in \mathscr{A}}$ on $R^n \times R^m$. Then we denote by $[\tilde{K}^1(x_1)]^*$ the operator given by

$$\left[\tilde{K}^{1}(x_{1})\right]^{*}f(x_{2}) = \sup_{\alpha \in \mathscr{A}} \left|\tilde{K}^{1}_{\alpha}(x_{1})f(x_{2})\right|.$$

Then we have the following

PRODUCT ZO LEMMA. Let $\{K_{\alpha}\}_{\alpha \in \mathscr{A}}$ be kernels on $\mathbb{R}^n \times \mathbb{R}^m$ satisfying the following:

(i) The operator

$$T * f(x_1, x_2) = \sup_{\alpha \in \mathscr{A}} |f * K_{\alpha}(x_1, x_2)|$$

is bounded on $L^2(\mathbb{R}^n \times \mathbb{R}^m)$.

(ii) There exists $\delta > 0$ so that

$$\begin{split} & \int_{|x_1| > \gamma |h|} \left\| \left[\tilde{K}^1(x_1 + h) - \tilde{K}^1(x_1) \right]^* \right\|_{L^2, L^2} dx_1 \leqslant C \gamma^{-\delta} \quad \forall h \neq 0, \qquad \gamma \geqslant 2, \\ & \int_{|x_2| > \gamma |k|} \left\| \left[\tilde{K}^2(x_2 + k) - \tilde{K}^2(x_2) \right]^* \right\|_{L^2, L^2} dx_2 \leqslant C \gamma^{-\delta} \quad \forall k \neq 0, \qquad \gamma \geqslant 2. \end{split}$$

(Here $\| \|_{L^2, L^2}$ denotes the norm of an operator on L^2 .)

(iii)

$$\iint_{\substack{|x_{1}| > \gamma_{1}|h| \\ |x_{2}| > \gamma_{2}|k|}} \sup_{\alpha \in \mathscr{A}} \left| \left[K_{\alpha}(x_{1} + h, x_{2} + k) - K_{\alpha}(x_{1}, x_{2} + k) \right] - \left[K_{\alpha}(x_{1} + h, x_{2}) - K_{\alpha}(x_{1}, x_{2}) \right] \right| dx_{1} dx_{2}$$

$$\leq C \gamma_{1}^{-\delta} \gamma_{2}^{-\delta} \quad \text{if } h, k \neq 0, \gamma_{1}, \gamma_{2} \geq 2.$$

Then the operator T* satisfies

$$m\{(x_1, x_2) \in R^n \times R^m | |x_1|, |x_2| < 1, T^*f(x_1, x_2) > \alpha\} \le (C/\alpha) \|f\|_{L \log^+ L}$$
 whenever f is supported in $S = \{|x_1| < 1\} \times \{|x_2| < 1\}$.

PROOF. The proof consists in repeating essentially word for word the proof of the Calderón-Zygmund theorem given above, only letting T^* play the role that T plays in that theorem. The only difference occurs in the proof of a lemma from [5] referred to there as the "trivial lemma". We prove an analogous lemma below. (This is used to prove (*) and (**) above for T^* .)

LEMMA. Let $a(x_1, x_2)$ be supported in the product of two cubes $I \times J = R$. Suppose that $\int_I a(x_1, x_2) dx_1 = 0 \ \forall x_2 \in J$ and $\int_I a(x_1, x_2) dx_2 = 0 \ \forall x_1 \in I$.

Then if \tilde{I}_{γ} denotes the cube concentric with I whose sides are γ times as long as those of I,

$$\iint_{x_1 \notin \tilde{L}_n} T^*a(x_1, x_2) dx_1 dx_2 \le C \|a\|_{L^2(R)} m(R)^{1/2} \gamma^{-\delta}.$$

PROOF OF LEMMA. Assume R is centered at 0. We estimate

$$\iint_{\substack{x_1 \notin \tilde{I} \\ x_2 \in \tilde{J}_2}} T^* a(x_1, x_2) \, dx_1 \, dx_2$$

first as follows: Fix $x_1 \notin \tilde{I}_{\gamma}$. Then

$$\int_{\tilde{J}_2} T^* a(x_1, x_2) dx_2 \le C \left(\int_{\tilde{J}_2} (T^* a)^2 (x_1, x_2) dx_2 \right)^{1/2} m(J)^{1/2}.$$

Now introduce the notation that $a_{x_1}(x_2) = a(x_1, x_2)$ and $T_{\alpha}f = f * K_{\alpha}$. We see that

$$(T_{\alpha}a)_{x_1} = \int_{\Gamma} \tilde{K}_{\alpha}^{1}(x_1 - y_1) \cdot a_{y_1} dy_1$$

so that, since $\int_I a_{y_1} dy_1 = 0$, this equals

$$\int_{I} \left[\tilde{K}_{\alpha}^{1}(x_{1}-y_{1}) - \tilde{K}_{\alpha}^{1}(x_{1}) \right] a_{y_{1}} dy_{1}.$$

It follows that

$$(T^*a)_{x_1} \leq \int_I \left[\tilde{K}^1(x_1 - y_1) - \tilde{K}^1(x_1) \right]^* a_{y_1} dy_1$$

and

$$\left\| (T^*a)_{x_1} \right\|_{L^2(R^m)} \leq \int_I \left\| \left[\tilde{K}^1(x_1 - y_1) - \tilde{K}^1(x_1) \right]^* \right\|_{L^2(R^m)} dy_1.$$

Therefore

$$\int_{\tilde{J}_2} T^*a(x_1, x_2) dx_2 \leq \int_{\tilde{J}} \left\| \left[\tilde{K}^1(x_1 - y_1) - \tilde{K}^1(x_1) \right]^* \right\|_{L^2, L^2} \left\| a_{y_1} \right\|_{L^2} m(J)^{1/2} dy_1.$$

Integrating in $x_1 \notin \hat{I}_{\gamma}$,

$$\begin{split} &\iint\limits_{\substack{x_1 \notin \tilde{I}_{\gamma} \\ x_2 \in J_2}} T^*a(x_1, x_2) \, dx_1 \, dx_2 \\ &\leqslant \iint\limits_{Ix_1 \notin \tilde{I}_{\gamma}} \left\| \left[\tilde{K}^1(x_1 - y_1) - \tilde{K}^1(x_1) \right]^* \right\|_{L^2, L^2} \left\| a_{y_1} \right\|_{L^2} m(J)^{1/2} \, dx_1 \, dy_1 \\ &\leqslant C \gamma^{-\delta} \int_I \left\| a_{y_1} \right\|_{L^2} m(J)^{1/2} \, dy_1 \leqslant C \gamma^{-\delta} \| a \|_{L^2(R)} m(R)^{1/2}. \end{split}$$

Now we estimate $\iint_{x_1 \notin \tilde{I}_{r}; x_2 \notin \tilde{J}_2} T^* a \, dx_1 \, dx_2$. Now let $x_1 \notin \tilde{I}_{\gamma}, x_2 \notin \tilde{J}_2$.

$$T_{\alpha}a(x_1, x_2) = \iint_{I \times J} a(y_1, y_2) K_{\alpha}(x_1 - y_1, x_2 - y_2) dy_1 dy_2$$

$$= \iint_{I \times J} a(y_1, y_2) \{ [K_{\alpha}(x_1 - y_1, x_2 - y_2) - K_{\alpha}(x_1, x_2 - y_2)] - [K_{\alpha}(x_1 - y_1, x_2) - K_{\alpha}(x_1, x_2)] \} dy_1 dy_2.$$

Denote the second difference in braces by ΔK_{α} and $\sup_{\alpha} |\Delta K_{\alpha}|$ by Δ^*K . Then

$$\iint\limits_{\substack{x_1 \notin \tilde{I} \\ x_2 \notin \tilde{J}_2}} T *a \, dx_1 \, dx_2 \leq \iint\limits_{R} \left| a(y_1, y_2) \right| \iint\limits_{\substack{x_1 \notin \tilde{I}_y \\ x_2 \notin \tilde{J}_2}} \left| \Delta *K(x_1, x_2, y_1, y_2) \right| dx_1 \, dx_2 \, dy_1 \, dy_2$$

$$\leq C\gamma^{-\delta}||a||_{L^{1}(R)} \leq C\gamma^{-\delta}||a||_{L^{2}(R)}m(R)^{1/2},$$

and this proves the lemma.

BIBLIOGRAPHY

- 1. F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122.
- 2. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
- 3. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.
 - 4. J. L. Journé, Calderón-Zygmund operators on product spaces, Revista Iberio-Americana (to appear).
- 5. R. Fefferman, Calderón-Zygmund theory for product domains-H^p spaces, Proc. Nat. Acad. Sci. U.S.A. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637