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A NOTE ON A LEMMA OF ZO

R. FEFFERMAN

Abstract. In this article we prove that a general class of singular integrals on

product spaces maps L log L boundedly to weak L1. We use this to prove a theorem

about maximal functions which generalize the strong maximal function.

Introduction. In [1] Zo proved the following result:

Lemma. Suppose that {Ka(x)}aej¿ is a collection of kernels on R" satisfying

(1) f   \Ka(x)\dx ^ C   for all a <= s/
JR„

and

(2) f sup\Ka(x + h) - Ka(x)\dx^ C   for all h * Q.

Then for T*f(x) = supaej>,|/ * Ka(x)\, we have

m{T*f(x)>\) < (C/X)||/||z.'(/T)    forall\>0.

The idea behind the proof of this result is the Calderón-Zygmund decomposition

[2, 3] of an 1} function. Our purpose here is to extend the lemma of Zo to product

spaces, and the machinery used in doing this is given in [4 and 5]—namely, Journé's

geometric lemma, together with an atomic decomposition for Llog+L functions

which closely resembles the atomic decomposition for H1 functions in the "product

setting". In order to carry out the extension we desire, we shall first prove (as is

needed in the classical case) a kind of Calderón-Zygmund theorem for product

spaces. This is announced in [5], and we shall indicate here the ideas which must be

added to those in [5] in order to prove such a theorem. After this is done, we shall

proceed to state and prove Zo's Lemma for product spaces.

A Calderón-Zygmund theorem. We shall begin with some notation. Suppose that T

is   an   integral   operator   with   kernel   K   on   R".   This   means   that   Tf(x) =

JR„K(x, y)f(y)dy for x g R". Suppose that T is bounded on L2(R") with opera-

tor norm \\T\\L2 Lt and that K satisfies

(*) / \K(x,y) - K(x,y')\dx < Cy~s    for some Ô > 0,
1-x: — v|> yI.V-.v'I
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and every y > 2. Then we define the Calderón-Zygmund norm of T, ||T||CZ, by

\\T\\cz=\\T\\lkû + inf{C> 0|* holds}.

Now suppose that K(xv yx,x2, y2) is a kernel defined for x1, yx g R" and x2,

y2 g Rm. For each fixed xl and yl we define the integral Kl(xx, yx) which acts on

functions on Rm as the operator whose kernel (which we also denote

K\x^, y^)(x2, y2)) is given by Kl(x^ yx)(x2, y2) = K(xx, yx, x2, y2). We define

K2(x2, y2) similarly. Then we have the following result [5]:

Theorem. Let K(xx, yx, x2, y2) be defined for xx, yx G R" and x2, y2 g Rm, and

let

U(x1,x2)=    jj   K(xl,yl,x2,y2)f(yl,y2)dyldy2

R" X «"'

for (xv x2) g R" x Rm. Assume that

(1) Tis bounded on L2(R" X Rm).

(2) f \kx(xx, y,) - Kx{Xl, y'^W^dx, ^ Cy-S   for all y ^ 2,
i*i-.m>Yi.vi-.vii

(3) [ \\K2(x2,y2)-K1{x2,y2')\\czdx2^Cy~s   for all y > 2.
Ha-2-v2|>yI.v2-.v¿I

Then for functions f(x1,x2) supported in the set {(x¡,x2)\ \x¡\ < 1, i = 1,2} we

have the estimate

m{ (xl,x2)\\xl\^h\x2\^l,\Tf(xl,x2)\>\} <(C'/\)\\f\\Llog+ L.

Proof. Given f(xvx2) supported in {|x,| < 1} X { |jc2| < 1} = S, we may write

/ (in S) as f(xl,x2)=f1+f2(xl)+f3(x2)+f4(x1,x2), where /, is constant,

/|.v,i< 1/2(^1)^1 = 0. /|.x2i<i/3(^2)^2 = 0, IM<iA(x1,x1)dx1 = 0 for all x2,

f\x2\<i/Áx1,x2)dx2 = 0 for all xv and ||/,||¿log/, < C||/||llogL for i < 4. To han-

dle /,, of course, we may use the L2 boundedness of T. To handle f2 and /3, we

proceed as follows: Identify f2(xx) with a function of x, with values in L2(dx2)

which happen to be constant on \x2\ < 1: /2(-,ciX-x:2) = /2(-xi)X|.xr2|<i(-x2)- Then

/2 is a function in Hl of the xl variable with values in L2. By the vector

valued classical Calderón-Zygmund theory it follows that for 772(x,) =

/ K1(xl, i,1)/2(>'1) dy1, we have ff2 g I} with values in L2. Restricting our attention

to { \x2\ < 1}, we see that ff2 belongs to L1 with values in L1(|x2| < 1; dx2), and

this implies that Tf2 belongs to Ll(S).

We now handle the main term, which is T(fA). We assume ||/4||z.iogi. = 1. We first

obtain an atomic decomposition of /4, proceeding as in the Hp theory in [5]. Here,

because the area integral of /4 (with respect to a function uV), 5*^(/4) is in Weak Ü,

applying the same argument as in [5] we obtain a decomposition /4 = T.f=_o0ak,

where the ak  are atoms with the following properties: There exists a constant
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C > 1010 so that

1. ak is supported in an open set ük with m(Qk) < 1/C\

2. each ak can be further decomposed as LRak R, where ak R is supported in the

double of the maximal dyadic subrectangle Äci!t, has mean value 0 in each of the

*! and x2 variables separately, and

ii2

R

»*L»<c*.

Now given a > 0, we wish to prove that

m{ (Xl,x2) <- S\\T(f4)\> a} ^ (C/a)\\f4\\LloéL(S).

To do this, suppose that a satisfies CN < a < CN+1. Then, since

N+l

E a<
Af+l

<  £ l|a*ll2
2        k = -cc

< ¿C"^ ^ /i'a'«1/2

for some constants /4, A', we have

»!

/   N + l

U = -oo

> a> <
C JV+1

E     flA
A; = -oc

C"

To handle TÇ£.f_N+2ak), we consider the atom ak, k > N + 1, along with its fine

structure. a¿. is supported in £2¿, whose measure is at most 1/C* and can be written

as ak = Y.Rak R, where R is a maximal subrectangle of Qk. In [5] (see also [4]) it is

shown how to construct rectangles R 2 R with the properties

(•) i(\jR) ^ Am(Qk)    and    W     lr(«*,*)l<**.<A-
R      C(R)

If the reader examines the proof of (*), it will be clear that if we dilate each R by a

factor of (C/100)(*-A')/4(" + m) to produce ~R, then

* I   C x3'*-^)/4

(**)

and

,(U*)<^(¿ír m(Qk)<AC-W-^\

E/     |7'(a4iJ,)|ifeiÇi4C-r<*--,")    for some Ó" > 0.

(In (*) and (**) R runs through the maximal subrectangles of Qk.)

Let us now sum the estimates of m(ÖR) over all k > N. This tells us that

m(Uk> wUflçr^. R maximal^) ^ ^ /a-

Summing the second estimate of (**) over k > N produces

/
T   £«,

*>N

dx < /4',

where £ = \Jk>NURQQk. R maximai^- Applying Chebychev's estimate, we complete

the proof that w{|7X/4)| > a} < A/a, since

r(E«
*>JV

> a ) ^ m
1

a /. A E
A> A1

Í&C.
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A Zo lemma. Now we shall prove a product version of Zo's lemma. To do this, we

require some notation. For a kernel K(xx, x2) on R" X Rm recall that we denote by

K1(x1) the operator which acts on functions of the x2 variable by convolving with

K(xv ■). K2(x2) is defined similarly. Suppose that we are given a collection of

kernels {Ka}a&J¿ on R" x Rm. Then we denote by [K1(x1)]* the operator given by

[Kl(Xl)]*f(x2) = sup\Kla(Xl)f(x2)\.
a^jtf

Then we have the following

Product Zo Lemma. Let {Ka}aej, be kernels on R" X Rm satisfying the follow-

ing:

(i) The operator

T*f(x1,x2)= sup\f*Ka(Xl,x2)\

is bounded on L2(R" X Rm).

(ii) There exists 8 > 0 so that

f ¡[K1(xl^h)-Kl(xl)]*iLlLldxl^Cy->   VA#0,       y > 2,
l*ll>Y|A|

/ \\[K2(x2 + k)-K2(x2)]*\\L2 Lldx2^Cy~s    VA:*0,        y > 2.
J\x^\>y\klJ\x2\>y\k

(Here || ||L2 L7 denotes the norm of an operator on L2.)

(iii)

ff        sup\[Ka(Xl +h,x2 + k)-Ka(xl,x2 + k)]
|x,|>Y,|A|      «&<•

l*2l>Y2|A|

-[Ka(xk + h,x2) - Ka(xx,x2)] \dxxdx2

<CYi-äy2-s   ifh,k + 0,yi,y2>2.

Then the operator T * satisfies

m{(Xl,x2) (E R" X Rm\\Xl\,\x2\< l,T*f(xux2)>a} < (C/a)||/\\L1og* L

whenever f is supported in S — (|x,| < 1} X { |jc2| < 1}-

Proof. The proof consists in repeating essentially word for word the proof of the

Calderón-Zygmund theorem given above, only letting T * play the role that T plays

in that theorem. The only difference occurs in the proof of a lemma from [5] referred

to there as the " trivial lemma". We prove an analogous lemma below. (This is used

to prove (*) and (**) above for T*.) *

Lemma. Let a(xx, x2) be supported in the product of two cubes I X J = R. Suppose

that f,a(x1, x2)dxx = 0 Vjc2 g J and fJa(xl, x2)dx2 = 0 Vxj G /.

Then ifly denotes the cube concentric with I whose sides are y times as long as those

of I,

// T*a(x1,x2)dxldx2 < C\\a\\L2(Rm(R)1/2y-s.
X, Í /„
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Proof of lemma. Assume R is centered at 0. We estimate

//   T*a(x1,x2) dxxdx2
AT,«/

first as follows: Fix xx £ ïy. Then

/ \1/2

f  T*a(xi,x2)dx2*iC[f_ (T*a)2(xx,x2)dx2\     m(J)1i   a\xx, x2) ax2 4-ci  i    \i   a) \xx, x2) ux2 |      my j

Now introduce the notation that a  (x2) = a(xx,x2) and Taf = f * Ka. We see

that

(Taa)Xl=f kl{xl-yl)-andy1

so that, since f,av¡ dyx = 0, this equals

f [Kl(xi- yx) - KKx^a^dy,.
Ji

It follows that

(T*a)x¡ < [ [k\xx - yx) - Kl(xx)] *av¡ dyl
Ji

and

\\(T*a)4LHR^< fr¡[ÑKxi- yi) - ^Kxi)]%tJaJtHR^dyv

Therefore

/ TMxi,x2)dx2*j\\[K\x1-y1)-É\x1)]%JaJLMJ)l/2dyi-
j2 i

Integrating in xx € Iy,

ji   T*a(xx,x2) dxxdx2

xlmh
x2 ej2

< //  ¡[K^-y^-K^x^l^JaJ^miJf^dx^

< Cy'f \\aJLMJ)1/2dyi < CY-Ä||u||^(«)m(Ä)1/2.

Now we estimate // e / X2<tj2T*adxxdx2. Now let xx € ïy, x2 £ J2.

Taa(xx,x2) = fj a(yl,y2)Ka(xl -yl,x2 -y2)dyldy2
IXJ

= ¡fa{yi,y2){[Ka{xl -yx,x2 -y2) - Ka(xx,x2 -y2)\
IxJ

-[*■(■*! - y^x2) - Ka(xx,x2)}) dyxdy2.
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Denote the second difference in braces by AKa and supa | A ATaj by A*K. Then

JJ   T*adxxdx2^ JJ\a(yx,y2)\  Jj \A*K(xx, x2, yx, y2)\dxxdx2dyxdy2
a, «Ê / R X[ € Iy

x2£J2 x2&J2

< CY-S||a||i.'(«)< Cy-s\\a\\L2(R)m(R)l/2,

and this proves the lemma.
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