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ENLARGEMENTS OF ALMOST OPEN MAPPINGS

ROBIN HARTE AND MARTIN MATHIEU1

Abstract. If the enlargement of a bounded linear operator has dense range, then the

operator must be almost open.

Introduction. If A" is a normed space we write [1]

(0.1) Q(X) = lx(X)/c0(X)

for the enlargement of X, and if T g BL( X, Y) is a bounded linear operator between

normed spaces we write

(0.2) Q(T):Q(X)^Q(Y)
for the operator induced by T, so that for each x G lx( X) we have

(0.3) Q(T)(x + c0(X)) = (Tx) + c0(Y).

Now we recall that

(0.4) Q(T) one-one =» T bounded below =» Q(T) bounded below

and [1, Theorem 4.1],

(0.5) Q(T) almost open => Talmost open =» 0(7") open.

It is the purpose of this note to improve (0.5) by confirming the conjecture (4.1.3)

of [lj-

ll

Theorem. If T g BL(A^, Y) is a bounded linear operator between normed spaces

then

(1.1.1) Q(T) dense => Talmost open => Q(T) open.

Proof. Suppose tp: lx -* C is a bounded linear functional for which

(1.1.2) c0Q<p-l(0),

then for each normed space X we may define

(1.1.3) ^x:Q(X^)^Q(X)t

by setting, for each/ g /oo( A't) and each x g lx(X),

(1.1.4) ^[/LKW) = ?(/.(* ));
here A^ denotes the usual dwa/ of the normed space A', [x] = x + c0(X) and

[/]=/+ c0(Arf) are cosets, and/_(xj = a <e lx where a„ = f„(xn) for each « g M.

The reader should check, using (1.1.2), that the right-hand side of (1.1.4) depends
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only on the cosets [/] and [x] and that the linear mapping <p^[/]): Q(A')t -» C is

bounded. Using the Hahn-Banach theorem we claim

(1.1.5) [0] * [/] g Q(jft) ~ <p (/.(*. )) * 0 for some x g lJX),<p g (/^Ao)1;

for if /g /00(A't) is not in c0(A't), then limsup„||/„|| > 0 and hence there is

x G /00(A') for which hmsup„|/„(x„)| > 0, so that/.(*.) g lx is not in c0. Now by

the Hahn-Banach theorem there is <p g (lx)* satisfying (1.1.2) for which <p(/.(x.)) =£

0.

If T g BL(X, Y) and <p g (lx)f satisfies (1.1.2) then we claim

(1.1.6) Q(T)f°<Py = cp'x°Q(Tt);

for this is just the associative property

(1.1.7) <p(g.(Tx).) = <p((gT)Xx.)) for each * G lJX),g<= IjY*).

We are ready to make our final claim: if T g BL(Ar, Y) then

(1.1.8) Q(T)f one-one => Q(Tf) one-one.

Indeed suppose Q(T+) is not one-one, so that there is g g l^Y*) for which

(1.1.9) gTGcoUt)   and   g<£cQ(Y*),

and then by (1.1.5) there is <p g (/00)t and>> g lx(Y) for which

(1.1.10) coc<p_1(0)   and   <p(g.(y.)) * 0;

but now

(1.1.11) Q(T)t((P;[g])=[0]GQ(A')t    and    [0] * c/Jg] G Q(Y)\

A familiar application of the Hahn-Banach separation theorem now gives (1.1.1): If

re BL(A-, T ) then

(1.1.12) Q(T) dense =» Q(T)f one-one => Q(Tf) one-one

and

(1.1.13) Q(T+) one-one => Tt bounded below => Talmost open.

For an alternative proof of Theorem 1.1 we can use ultrafilters on N instead of

linear functionals on lx/c0 [2].
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