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DIRICHLET INTEGRAL AND STAR-FUNCTION INEQUALITIES

J. R. QUINE

Abstract. Let X(z) be a smooth function in an annulus, X(z) its symmetric

rearrangement and X*(z) its star-function. A formula is proved relating AX*, AX,

and the Dirichlet integrands of X and X. The formula shows the relationship

between Dirichlet integral inequalities and the subharmonicity of X* for sub-

harmonic X, and gives an explicit formula for AX*.

The purpose of this paper is to continue the study initiated in [6 and 7] of the

relationship between the Dirichlet integral inequalities of Pólya and Szegö [5] and

the star-function techniques of Baernstein [1, 2]. There we considered a function /

analytic in an annulus and studied the function 3(log|/|)*/3 log z showing that it

could be viewed as a symmetrization of the function /. Let A = d2/dl2 + o2/dd2

where / = log|z| and 0 = argz. We showed that A(log|/|)* exists in the usual sense

almost everywhere and we gave an explicit expression for it in terms of the partial

derivatives of log|/|. As a consequence, the inequality A(log|/|)* > 0 was seen to be

equivalent to a nonintegrated version of the Dirichlet integral inequality between

log | y | and its symmetrization. The techniques made heavy use of the harmonicity of

log|/| and of the conjugate function arg/.

In this paper we extend our results to include any smooth function X(z) satisfying

fairly general regularity conditions. We give a formula for AX* in terms of the

Dirichlet integrand of X and its rearrangement X and an integral involving AX

(Theorem 2). The proof is by explicit computation of all terms involved. When

applied to subharmonic X this formula gives the subharmonicity of X* which is seen

to be a consequence of the inequality AX > 0 and the unintegrated Dirichlet integral

inequality. The unintegrated Dirichlet inequality is stated in Theorem 1.

Let X(z) be a smooth function defined in an annulus rx < \z\ < r2. It will be

convenient to think of X = X(/, 6) as a function with period 27r in the variable 6.

The graph W of X will be thought of as lying in a (l,8,\) plane with points

(1,0 + 2irk-, X) identified for integers k.

For fixed /0, X0 let E(l0, X0) be the set of points (lQ,6, X0) on W with X > X0.

Let Eg(l0,\0) be the set of 0 in the interval [-it, it] such that (l0,d, X0) is in

E(l0, X0). Let W* be the set of points of the form (/, \\Ee(l, X)|, X), Ee(l, X) * 0.

Let W* be the set of points of the form (1,0, X) with (/, -0, X) in W*. Then

W * = W * U W * determines the graph of the rearranged function X (see [2]).

We will consider pairs (/0,X0) such that W intersects the line I = l0, X = X0

transversely. This means that X(/0,#) = X0ata finite number of values of 8 at each
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of which \g(l0,6) =t 0. We will refer to such an (/0, X0) as regular. For regular

(/0, X0), let W(l0, X0) be the set of points (l0,8,\0) on W. Near (/0, X0) write

W(l, X) = {(l,8k, \)\k = 1,2,. ..,2n} where 6k = 8k(l,\) is chosen to vary

smoothly with (/, X). Define ek = e(l,8k,X) = — sgnXe(l,8k), then the 0-chain

T.p(=w(i,\)ekP may De thought of as the boundary of the 1-chain E(l,X). For

suitably chosen 8k, if we write

(1) *(',*)= T ¿eA(U),
k = i

then this equation can be thought of as a local parameterization of the surface W*.

Since 8 is a decreasing function of X for fixed 1,(1,8) also gives local coordinates on

W*. Note that for regular (/, X), W*(l, X) is the union of singletons W*(l, X) and

W*(l, X).

Define

(2) X*(/,X)= f        \(l,t)dt.

The star-function X* may be though*, of as a function on W*. Transferring to (1,8)

coordinates it may be thought of as a function in the upper-half plane near

exp(/0 + id(l0, X0)) where (/0, X0) is regular. (The global situation will be discussed

later.)

On W or W* we will frequently need to alternate between the variables (1,8) and

(/, X) at points where dl A dX is nonzero. This is most conveniently done by using

the 2-forms d8 A dX, dl A dX, and dl A d8 on the surface. For example,

df A dl/dX A dl can be interpreted as the partial derivative of / with respect to X

leaving / fixed on the surface, while df A d8/dX A dO is the partial derivative with

respect to X leaving 8 fixed.

Let D(X) = (X2 + X29)dl A dO denote the Dirichlet integrand. The basic Dirichlet

integral inequality of Pólya and Szegö may be stated in its unintegrated version as

follows.

Theorem 1 (Polya-Szegö). For regular (/, X),

ff(/,X) I^X A dl\       w*o,\) \dX A dl\

The proof given in Polya-Szegö [5, Note A] is derived from the inequality

(4) £    V^—^     I     7-^-7
H-V.X) \dX A dl\       w*0M \dX A dl\

where dS = ((dX A dl)2 + (dl A d8)2 + (dX A d8)2)l/2 is the element of surface

area. Inequality (4) is due to Steiner and follows from the triangle inequality. By (1),

we have

, . r-.    i dO A dl | r-.

If(/,X)
dXAdl

W*(l,\)

d8 A dl

dXAdl
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and

(6)
d8 AdX

' dl AdX

d8 A dX

' dl AdX
W(l,\) W*(l,\)

Theorem 1 may be obtained by subtracting (5) from (4), replacing X by ÔX, dividing

by 82/2 and letting Ô -> 0.

Another approach to (3) is by direct computation as in Hayman [4, p. 77]. We will

compute an expression for

DW r        D(\)F(l,*)=     I
n/(/,\) \dX A dl\

to prove Theorem 2. We have

-     I
w(i.\) \dX A dl\

(7)
¿>(A)

\dX A dl\

dX A d8

dl AdO

d8 A dX

+
dXA dl

d8 A dl

dl A dd

dl A dX

dd A dl

dXA dl

dXA dl

d8 A dl

dXAdl

Let P be the point W 1(1, X). Then using (5), (6), (7) and the symmetry W* we have

y D(X)
w'(i,\) \dX A dl\

-    2 d8 A dX

dl A dX

d6 A dl

dX A dl
+ 2

d8 Adl

,| 1    y      d8 A dX

•I 2 ^X)£ dl A dX \ E

dXA dl

d8 A dl

W(l,\)

1

W(/.X)

dXAdl

dO Adl

dXA dl

Thus

(8)  F(i,x) = [zef\e, "-(L^diöxiri+in^r1-4(110,
where 8, = d8 A dX/dl A dX, 8X = dd A dl/dX A dl and the sum is over W(l, X).

Now each term in brackets in (8) is seen to be nonnegative by the Cauchy-Schwarz

inequality, again demonstrating Theorem 1.

We now prove

Theorem 2. // (/, X) is regular with X = X(l, 8), then

(9) AX*(/,0)=  f

D(X)

AX(l,t)dt+    £    -^-
E(i,\) w(i,\) \dX A dl\

-    £

w*(/,A) \dX A dl\

Proof. The star-function may be written

X*(l,8)= f  X(l,t)dt
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and so differentiating twice, we easily get

dX A dl
(10) \*M = 2XÄ = 2v    ' ee 9 d8 A dl

Now differentiating (2) we get (for X* as a function of (/, 8))

where in the second term we think of the 8k as functions on W*. Since Y.ek8k — 28,

the second term in (11) is identically zero. Differentiating once more we get

(12) X* = /        Xnd8+Z^rdkAde
'E(l,\)

-L
E(l,\)

''EU,

X"d0 +  ?<* dl A dd

X„d8 + A

dl A d8

dX A d0L d0L A d8

dl A d8

'E(l,\)

where A denotes the sum above.

To derive an expression for A, we need an expression for d8k A dd/dl A d8. First

write

dX =
dX A d8k

dl A de.
dl

dX A dl
d0TTdld0k-

Taking the wedge product with d8 and dividing by dl A d8,

dX Add      dXA d8k       dX A dl d8k A d8

Solving, get

dl Ad8

d8k A dd

dl A d8L d8k Adl  dl A d8

dXAdl\   IdXAdS      dXAd8k

dl Ad8       \ d8L Adl]   \ dl A d8

Substituting in the expression above for A, get

A = L
dX A d8k l dX A dl

k dl Ad8k\ d6k A dl

dXA d8

dX A d8 dX A dl

dl AdX dl A d8 I    P   L

dl A d8

d0k A dX      „+ I
* dl A dX

dl A d8.

dX A d8h

dl A d8k

d8k A dX

dl A dX

dXA dl

d8k A dl
p k      — " -''        k

Using (5), (6) and symmetry as in the computation of (8), we see that A is identical

to the first term in brackets in (8).

By (10) and (12), we get

r        .    ...     - d\ A dl
v* =  f

JE(I,>
AX*

• X)
X"d6 + 1 d8Adl + A

-/,
AXd8

£(/,X) /.E(l,\)
XggdS  -  2

d8 A dl

dXA dl
+ A

'eu.
AXd8 + \    £

A> \ W(/,X)

dXAdl

d8 Adl

d8 A dl

dXAdl
+ A.
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The expression in parentheses is seen using (5) to be identical to the second term in

brackets in (8). This completes the proof of the theorem.

We remark that an expression for F can be obtained in the (1,8) coordinate

system. First write

d8 A dX _ dd A dX dd A dl dX A dd I dX A dlV1

dl AdX   ~   dd A dl dl A dX ~       dl A dd { dd A dl J

and

dd A dl = (dXA dlV1

dX A dl ~\dd Adl)   '

Substituting the above in (8), get

F(/,x)=Lx2/|x,rl-(Ex/ix,i"1)2(i:ix,|-y1

+ EI^I-4(l|x,f1)"1

where

dX A dl dX A dd
e~   dd Adl' '~   dl Add '

Theorem 2 shows the general principle behind the local subharmonicity of the star

function. If AX > 0 everywhere, then clearly AX* > 0 at points corresponding to

regular (/, X). There remains the question of how this applies to the subharmonicity

of X* at points where AX* is undefined, i.e., whether the subharmonicity of X* for

subharmonic X can be proven using the computation of the Laplacian in Theorem 2.

We will show that subharmonicity of X* for subharmonic X can be proved using

the computation of the Laplacian in Theorem 2. Recall that if <¡> is a locally

integrable function then there is associated to it a distribution 7^ (see Donoghue [3,

p. 92]). We now state

Theorem 3. If 0 is a regular value of Xe, then the distribution corresponding to the

function AX* in Theorem 2 is the distributional Laplacian of X*.

Proof. By hypothesis, the set S of points (/, d) such that Xe(l, 0) = 0 is a smooth

1-submanifold of the (/, d) plane. Let S' be the set of points (/, d) with 0 < 8 < m

such that X(/, d) = X(/, t) for some (/, t) e S, then S" consists of the union of a

finite number of smooth curves. Now if D is the strip 0 < d < it then AX* is

defined by Theorem 2 in D — S'. By (10) and (11) we see that the first partíais of X*

are continuous in D, hence X* e Cl(D) n C2(D - S'). Under these conditions it is

easy to see using Green's theorem that 7^x, = A7\., where the second A indicates

the distributional Laplacian. (Green's theorem shows that the equation holds on

each subregion of D — S' except for a term involving integration over the boundary.

These terms cancel because X* e Cl(D).) This completes the proof of the theorem.

We now use Theorem 3 to prove

Theorem 4 (Baernstein). // X is subharmonic then X* is subharmonic.
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Proof. We will show that ATX. ̂  0 which implies the subharmonicity of X*

(Donoghue [3, p. 128]). Since it can be easily shown that

\\K ~ X*2\\x ̂  2^\\XX - X2\\x

and since the smooth subharmonic functions are dense in the subharmonic func-

tions, we may assume without loss of generality that X is smooth. By Sard's

Theorem the regular values of Xe are dense, so the e may be chosen arbitrarily small

so that 0 is a regular value of Xe + e = (X + ed)e. The function X + ed is also

subharmonic, so by Theorem 3, AT(A + (,fl). > 0. Letting e -* 0, get ATA» > 0. This

completes the proof.

In conclusion we remark that in Polya-Szegö [5, Note A] it was pointed out that

the principle of diminution of surface area and of Dirichlet integral holds not only

globally, but also locally for all the surface elements W(l, X). The power of

star-function techniques appears to be a consequence of the fact that it is equivalent

to the stronger, unintegrated form of the Dirichlet integral inequality.
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