
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 96. Number 2. February 1986

POLYNOMIAL HULLS WITH CONVEX SECTIONS

AND INTERPOLATING SPACES

ZBIGNIEW slodkowski

Abstract. Assume that L c 3D x C' is compact and has convex vertical sections.

Denote by K its polynomially convex hull. It is shown that K\dD X C"', if

nonempty, can be covered by graphs of analytic functions /: D -» C"'. The proof is

based on complex interpolation theory for families of finite-dimensional normed

spaces.

1. Introduction. If L is a subset of Cm+1 and z g C, denote

L(z) = (w G C':(z,w) g L);

we will refer to L(z) as a section or fiber over z. In what follows D denotes the open

unit disc.

The purpose of this paper is to present a proof of the following theorem.

Theorem 1. Let L be a compact subset of úD X Cm. Assume that for every z g 3D

the section L(z) is a nonempty compact and convex subset of C'. Denote by K the

polynomially convex hull of L. Then for every (z*,w*) in K such that z* g D, there

exists a bounded analytic function f: D -* Cm such that f(z*) = w* and f(z) g K(z)

for every z G D.

Two different proofs of this theorem, which generalizes the earlier approximation

result of Alexander and Wermer [1], were obtained independently by H. Alexander

and J. Wermer on the one hand, and by the author on the other.

The proof given below is based on the theory of complex interpolation for families

of finite-dimensional normed spaces as presented in Coifman et al. [4] and, at least

for this reason, is not simpler than that of Alexander and Wermer. However, our

proof is perhaps not without interest since it is carried over for arbitrary dimension

m (the paper of Alexander and Wermer is focused on the case m = 1) and presents a

new instance of relationship between the theory of complex interpolation of Banach

spaces and the theory of analytic multifunctions. Namely, if K ¥= L, then the

multifunction z -> K(z): D -» 2C"' is analytic in the sense of [7]. A different type of

relationship between the two theories was described in [8].

For more information on analytic multifunctions the reader is referred to [3, 5, 6].
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2. Method of proof.

Notation. The polynomially convex hull of a set X c Cm is denoted by hull(X)

and convex hull by co(A^). The usual bilinear product £f,z; in C" is denoted by

(v, z), and if X is a subset of C", then the set

(1) Xo = {v g C": |<i\z>|< l,forz g X)

denotes the (closed) polar of X. Subsets of Cm+\ e.g. L c dD X Cm, will be looked

upon as graphs of set-valued functions ( = multifunctions), e.g. z -* L(z): dD -* 2C'"

(in case the projection of L on C1 fills dD).

The proof of Theorem 1 will be easily reduced to the case of sets L for which the

multifunction z —> L(z): dD -» 2C"' is continuous. Assuming this we fix r g (0,1)

and for each z g dD define the set B(z) c Cm+1 as the convex hull of the union of

the two sets

(2) {(w,u) G Cm X C: |w|2+|w|2 < /■},

(3) {(wu,u) g CmX C: w g L(z), |u|< l}.

Proposition 2. 7/z -» L(z): dD -» 2C"' « a continuous multifunction with all L(z)

convex and compact then the multifunction z -» B(z): dD —* 2C"' , defined as above,

is continuous and all B(z) are norming bodies ( = convex circled and compact sets with

nonempty interior).

Since every B(z), z G dD, defines a norm on Cm+1, the complex interpolation

method of Coifman et al. [4] yields intermediate norms for all z in D. We find it

more convenient to consider the family of closed norming bodies {W(z)\ z g D)

corresponding to these norms. We summarize now and reformulate in terms of

(W(z)} those results of [4] which we use below. (Note the weakened form of these

results.)

Theorem 3 (Coifman et al. [4], Theorems I and II). If

z - B(z): dD - 2e"

is a continuous multifunction whose values are compact norming bodies, then there

exists a family of compact norming bodies

z-+ W(z): dD -» 2C"',

such that W(e'e) = B(e'e) and

(i) for every a g D and be W(a) there exists a bounded analytic function f:

D -» 2C" such that f (a) = b, f(z) G W(z) for every z G D andf(eiB) G B(e'e) a.e.

(/(•) denotes nontangential boundary value);

(ii) the same condition as (i) with sets B(e'e) and W(z) replaced by their closed

polars B(e,6)° and W(z)° (cf. (1)) holds.

Using these facts we can reinterpret family W(-) in terms of hulls, which is the

first step of our proof.
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Theorem 4. Under the assumptions of Theorem 1W = hull(.ß), where

(4)    W = {(z,w): z G D, w G W(z)};        B= {(z,w): z G 3Z), w G B(z)}.

The essence of our argument is to apply this description to multifunction B(-)

obtained from L(-) by (2), (3). It follows that W n {« = 1} = K x (1) and so the

latter set is, in a sense, a face of W. Therefore those graphs of analytic functions /:

D -* 2C"' which pass through points of K X {1} and are contained in W have to

be contained in K X (1} as well. By Theorem 4 such graphs are in abundance and

so K X (1) is covered by them. This settles Theorem 1 in case multifunction L(-) is

continuous.

3. Proof of Theorem 4. We consider first three simple lemmas to get continuity of

W( • ) under assumption of continuity of B( ■ ).

Lemma 5. Under the assumptions of Theorem 3,

(i)hull(J5)n8D X CM = B,

(ii) W c hull(5).

Proof, (i) We will show that if a g dD and b g CM\B(a) then (a, b) £ hull(5).

Take r > 1 such that (b/r) G dB(a) and a C-linear form /: CM -* C such that

1(b) = r and |/(w)| < 1 for w g B(a). Set

^(z,w) = ((l+za)/2)A7(w),

where k is an integer. Note that the sequence \pk(z,w)\ is nonincreasing on B and

converges pointwise on B to the (upper semicontinuous) characteristic function of

the set {(z,w) e B: z = a, l(w)=l). Thus (cf. [6, Lemma 2.3, Assertion])

lim k(max B\ p k\) = 1, and so maxB\pk\ is smaller than pk(a,b) = r for k large

enough, i.e., (a, b) <£ hull(5).

(ii) Let a g D, be W(a) and p(z,w) be a complex polynomial such that

maxs|/»| < 1; we have to show that \p(a,b)\ < 1. Let / be a function satisfying

literally condition (i) of Theorem 3. Set h(z) = p(z,f(z)), z G D. Of course h is a

bounded holomorphic function whose nontangential boundary values are h(e'e) =

p(e,e,f(ew)) a.e. Since \p\ < 1 on B and f(e'e) g B(e,e) a.e., therefore H/t^ < 1

and so \p(a, b)\ = \h(a)\ < 1.    Q.E.D.

We omit the simple topological proof of the next lemma.

Lemma 6. Let (S,d) be a compact metric space and let B(z) be a compact norming

body in CM for every z G S. Then the following two conditions are equivalent:

(i) multifunction z -* B(z): S -» 2C   is continuous;

(ii) for every e > 0 there is S > 0, it/c/i //¡a/ whenever z', z" G S a«¿( d(z', z") < 5,

/ten B(z') c (1 + e)ß(z").

Lemma 7. Under the assumptions of Theorem 3 //le multifunction

z^ W(z):D^2c"

is continuous.

Proof. Io. Continuity at points of the open disc. The lower semicontinuity of W(-)

at z = a, \a\ < 1, follows immediately from condition (i) of Theorem 3.
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To prove upper semicontinuity at z = a G D, consider sequences ak —> a and

bk -* b such that bk g W(ak); we have to show that b g W(a). Choose by

Theorem 3(i) analytic functions fk: D -» CM, such that

(5) fk(ak) = bk;       fk(z)&W(z),    k = 1,2,..., z G D.

Select by Montel's theorem a subsequence fk(n) converging uniformly on compact

subsets of D to a function /. The sequence {ak} being relatively compact in D,

f(a) = limfk(n)(ak(>1)) = b.
n

On the other hand f(a) = limnfkin)(a) e W(a) by (5) and so b G W(a), as

required.

2°. Continuity at boundary points. Let a G 3£), ak e D, ak -* a, ¿^ g W(ak) and

¿A -* ¿>. By Lemma 5(h), (ak,bk) e hull(5) and so (a, b) G hull(5). By Lemma 5(i)

(a, b) G B, i.e., ¿> g 5(a) = If(a), which proves upper semicontinuity of W(-) at

z = a.

Define now for a g 3D, teC" and for an integer k, the polynomial mapping

pk(z) = ((1 + za)/2)kb. Note that />¿.(a) = b.

In order to confirm that W(-) is lower semicontinuous at z = a it suffices to show

that for every b in IntW^a) there exists an integer k such that pk(z) g W(z) for

every z G D. Observe first that by Lemma 6(ii) and the fact that \pk(z)\ \ 0 on

dD \ {a ) we can choose k such that

(6) p(e'e) G W(e'e),        e" g dD.

Accepting this, take z' g D and u g W(z')°, and apply Theorem 3(h) to get a

bounded analytic function g: Z) -> CM such that g(z') = i> and g(e'e) G B(eie)°

a.e. By (6) |<g(<?''"), /^.(e'"))! < 1 a.e. and therefore

\(v,pk(z'))\ = \(g(z'),pk(z'))\^suptSs\(g(e¡e),pk(e'e))\^l.

Vector v being arbitrary in W(z')°, we conclude that pk(z') G W(z'), which ends

the proof of lower semicontinuity of W( ■ ).    Q.E.D.

Proof of Theorem 4. Since by Lemma 5(ii)

W a n\xll(B) c hull(H^),

it suffices to show that W is polynomially convex. We need the following Assertion.

Assertion. For every R g (0,1) the set

(7) Y = {(z,w): |z|< R, wg W(z))

is polynomially convex.

To check this, fix a G D with |a| < R and b g Cm\ W(a); we will find a

polynomial p(z,w) such that |/>(a, ¿>)| is greater than maxy|/?|. Let a > 1 be such

that (b/a) g 35(a) and choose v g ß(a)c such that (v, b) = a. Choose by Theo-

rem 3(ii) an analytic function g: D -* Cm such that g(z) g fi(z)° for z g D. Set

/i(z,w) = (g(z),w) on DxC". Then A is an analytic function such that a =

h(a,b) > ma\y\h\ = 1. Choose a compact polydisc contained in D X CM and

containing TU {(a,b)}; approximating h by polynomials uniformly on this poly-

disc we find a polynomial p such that \p(a,b)\ is greater than maxr|/?|, which

proves the Assertion.
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By Lemma 6(ii) for every k = 2, 3, 4,..., there exists rk G (1 — k \ 1) such that

for every z G D

(8) W(z) c (1 + fc-1)^/**) c (1 + fc-1)2W(*).

Define

Yk = {(z,w): z g 73, w g (1 + fc-^ÏFfoz)}.

By inclusions (8) W(z) = (\(1 + k"l)W(rkz) for z G 73 and so ^ = f\ F*. Since

each Yk is the image, by a nonsingular linear transformation, of the set (7) with

R — rk, each Yk is polynomially convex and so is W.    Q.E.D.

4. Proof of Theorem 1.

Proof of Proposition 2. The compactness of B(z) follows from a theorem due

to Carathéodory by which each point in the convex hull of a subset X of RN is a

convex combination of N + 1 points of X. The same theorem yields easily the proof

that the multifunction B(-) is both lower and upper semicontinuous provided L()

is.

Lemma  8.   Let L and K be as in  Theorem 1.   Assume in addition  that the

multifunction z -* L(z) is continuous, and let W be defined as in §2. Then

(i) KX {1} = WC\ [u = 1},

(ii) the statement of Theorem 1 holds.

Proof, (i) By definition of B(z) (cf. (2), (3)) B(z) n {u = 1} = L(z) X {1} for

z G 3D and so

(9) Bn{u = 1} = L X{1}.

Set Z=W/n{w = l}. By Theorem 4 the graph W is polynomially convex and so is

Z. Since

Zn(3D x Cm+1) = fin{ii = l) = Lx(l),

therefore

ä:x{1} = hull(L) X{1} = hull(L X{1}) c Z.

Suppose that the reverse inclusion does not hold, i.e., there exists a polynomial

p(z,w,u) such that

(10) max|/7|=l> max \p\.
7. LX{1]

In this case consider polynomials

qk(z,w,u) =p(z,w,u)((l/2)(l + u))\

By (10) and the inclusion KZU {|(1/2)(1 + u)\ < 1} there exists k such that

max^l^l = 1 > maxB\qk\, which contradicts Theorem 4. Part (i) is proved.

(ii) Let a g D and b g K(a). By part (i) (b, 1) G W(a) and by Theorem 3(i) there

exists a bounded analytic function (/, g): D -* Cm X C such that f(a) = b,g(a) =

1 and (f(z),g(z)) g I^(z) for z g D. Since W(z) c (|M| < 1), Hgl^ < 1 and so

g s 1 in D, that is (/(z),l) g W(z) for z g D. By part (i) f(z) G ü:(z) for all

z G D.    Q.E.D.

The proof of the next proposition will be given after the proof of Theorem 1.
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Proposition 9. Let L c 3D XR" be a compact set such that for every z G 3D the

section L(z) is a nonempty compact convex set. Then there exists a decreasing

sequence of compact subsets of dD X R^ whose intersection is equal to L and such that

the multifunctions

z -+L„(z): dD -» 2RA',       « = 1,2,...

are continuous and all sections Ln(z) are convex and compact.

Proof of Theorem 1. Let set L c 3D X Cm be as in Theorem 1 and let Ln be a

sequence of subsets of 3D X C"1 satisfying conditions of Proposition 9. Let Kn =

hull(L„), n = 1, 2,.... Since D„hull(L„) = hull(L) (note Ln D Ln+1), therefore

K = H,, Kn. If a g D and b G K(a), then b g Kn(a) and applying Lemma 7(ii) one

obtains a sequence of analytic functions /„: D -» C"! such that fn(a) = b and

/„(z) g ä"„(z) for z & D. This sequence, being uniformly bounded, has a subse-

quence convergent to a function / such that f(a) = b and f(z) G ÀT(z) for z G D.

Q.E.D.
Proof of Proposition 9 (Sketch). It is more convenient to consider L cz [0,2tt]

X R^ with L(0) = L(2tt); we will obtain approximations Ln such that Ln(0) =

L„(2w). Let 0 = t0 < tx < ■■■ <tn = 2ir and let S,■ = co(U{L(í): í¿_i < t <

i, + 1}). Then 5, Pi Si+l contains L(t) for t¡ < t < i,+1. Define L* as the union of all

segments with endpoints on {;,} X S¡ and {ti+x} X S/+1, 0 < í < n — L It is clear

that L* contains L and the multifunction / -» L*(0 is continuous. (Also L*(0) =

L*(27r).) Set Ln, « = 1,2,..., as L* corresponding to the «th diadic division. The

sequence Ln fulfills our claim. (We omit further details.)
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