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ON A FACTORIZATION PROBLEM

FOR CONVERGENT SEQUENCES AND

ON HANKEL FORMS IN BOUNDED SEQUENCES

P. P. B. EGGERMONT AND Y. J. LEUNG

Abstract. We solve in the negative the following factorization problem of S. Mazur:

Can every convergent sequence be written as z(n) = (n + l)~lT."=0x(i)y(n - i),

n = 0,1,..., with convergent sequences x and y? This problem also yields the

solution of another problem of S. Mazur regarding bounded Hankel forms on the

space of all bounded sequences.

I. Introduction. We consider the following two problems of S. Mazur (Scottish

book, Problems 8 and 88; see [4]).

I. Can every convergent sequence z be written as z = xO y, with convergent

sequences x and y, where

n

(1.1) xay(n) = (n + l)~1'£x(i)y(n-i),        « = 0,1,...?
f-0

II. Suppose the sequence b is such that

00 oo

(1.2) Z x(i) I (#i + i + l)~lb(n + t)y(n)
i■ = 0 n = i

is convergent for all bounded sequences x andy. Is then T.^=0\b(n)\ < oo?

Problem I is concerned with the converse of the theorem "If x and y are

convergent, then xD y is convergent", and Problem II is an attempt at characterizing

Hankel forms on the space of all bounded sequences. The study of Hankel forms on

Hilbert space is a more standard subject, see Bonsall [1] and references therein.

It is quite natural to consider alongside Problem I the following weakened

version:

III. Can every convergent sequence z be written as

00

(1.3) z=  zZHk)xkOyk

with convergent sequences xk,yk, and

(1-4) £|A(*)llklllLv,H<oo?
A-0
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Now it turns out that the Problems II and III are equivalent: Both problems have

affirmative answers or both have negative ones. Since II has a negative answer as

shown by Kwapien and Peiczyhski, Problem III has a negative answer as well, and

consequently so does Problem I. Here we provide an alternative simple approach to

III and I. The idea is to study the growth of the means.

d
(1.5) A(z;r)=jJ\fte"z(re")

as r —» 1", where for every bounded sequence z,

dt

(1-6) *(«- E *(«)£",       lfl<l-
«=o

We get different rates of growth for general zee or zecDc.

The close relationship between II and III comes about by considering bounded

linear functionals of the form ß(z) = E"_0è(n)z(n) on cD c. If the interchange in

the order of summation is allowed, then ß(xU y) is equal to the Hankel bilinear

form (1.2), and this would go a long way in proving the equivalence. It turns out that

the interchange works, provided x or y are convergent sequences.

In the next section we establish some notations and prove some results about

cH c, viz. that cd c is dense in c, and that span(cd c) is a Banach space. In §3 we

give our solution to Problems III and I based on the A(z; r). In §4 we show the

interchangeability result, from which the equivalence of the two problems follows.

2. Preliminaries. As usual /°°, c and c0 denote the Banach spaces of all sequences

which are resp. bounded, convergent, and convergent to zero, with norm ||x|| =

sup{ |x(i){: i = 0,1,...}, and I1 is the space of absolutely summable sequences.

We denote the element of c all of whose components equal 1 by 1. Note that

1 □ 1 = 1. For x e c, we let xx = hm/_00x(/). Observe that for x, y e c, we have

(xOy)x = xxyx.

The following inclusions provide standard exercises:

(2.1) rnrczr,     cdccc,     c0n/°°cc0.

Problem I asks whether c D c = c, and we may wonder about the other inclusions as

well. (It will turn out they are all strict.) A first (misleading) step towards an answer

is

Lemma 2.1. cD c is dense in c.

Proof. Let z e c. Then z = zx ■ 1 + y, with y e c0. For 0 < r < 1, let yr be

defined by yr(n) = r"y(n). Then \\y - yr\\ -* 0 as r -> 1", and yr e I1. But then xr,

defined by xr(e") = e~"{(d/dt)e"yr(e")}, is in Z1 as well. Now yr = xrDl, and so

zr defined by zr = zx ■ 1 + yr satifies zr = (zx ■ 1 + xf)D 1 ecDc, and \\zr — z\\

-» 0 as r -* 1". So cD c is dense in c.    D

Later on we also need some properties of span(cD c), defined here as

(2.2) LMn)xnny„
n = 0

IIM«)llklllbJ<°°(.
n = 0
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x„,y„ convergent sequences. For z e span(cD c) define

(2.3) N|D = inf| EIM«)llklllkl
= 0

z=   £M«)(x„a _)>„),•
n = 0

Lemma 2.2. (span(cD c), || • ||n) is a Banach space.

Proof. If || • ||n is a norm, it is not hard to see that span(cD c) is closed in the

|| • ||a norm. We verify the triangle inequality. Let a = T.^=0X(n)(xnD yn), b =

T,™=0pt(n)(snn tn), d = Y,™=0v(n)(unn v„) be (nearly) "infimal" representations, and

a = b + d. Then T^=0{p(n)(snUtn) + v(n)(u„U vn)} is another representation of

a, but not necessarily (nearly) infimal, so
00 oc

£ IM«)llklllkll« E {lM(«)llklllkJ + k(«)llklllkll}
n = 0 n = 0

but this says that ||a||D < ||<b||Q + \\d\\n.   D

3. Estimates for A(z; r). We prove estimates for A(z; r) when z is an arbitrary

bounded sequence, and when zecDc. We then prove that the estimates are sharp.

(All integrals are over the interval [0,2w].)

Theorem 3.1. (i) For z e l"°, 0 < r < l,A(z; r) < 4w||z||(l - r2)"3/2;

(ii) for z^c, tímr_r A(z; r)(l - r2)3/2 = 0;

(in) for x, y e /«, 0 < r < l,A(xUy; r) < 27r||x|| ||j>||(1 - r2)-1.

Proof, (i) By the Cauchy-Schwarz inequality

d
A(z;r)<(2ir)1/2(J ¡j/'Hre")

1/2

<(2tt)1/2(  E(" + 1)2K»)|2''2b'

« 4*||z||(l - r2y3/2.

(In the second step we used Parseval's relation.)

(ii) Write z = zx ■ 1 + y, with y e c0. Similar to (i), one proves that A(y; r) =

o((l - r2)~3/2), and A(l; r) = 2tt(1 - r2)~\ Finally, A(z; r) ^ \zx\A(l; r) +

A(y; r) gives estimate (ii).

(iii) Since (d/dt){e"(xU y) (re")) = e"x(re")y(re"), the Cauchy-Schwarz in-

equality gives

A(xUy; r)<(/ |x(«")|2a)     (/lK«'')fl     .

Now
00

/" |x(re")|   A = 2ir £ |x(«)|2/"2" < 2tH|x||2(1 - r2)"1,
J n = 0

and a similar estimate for the j> integral gives the required bound.    D

It is now apparent that the inclusions in (2.2) are strict if the inequalities in

Theorem 3.1(i)-(ii) are sharp.
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Theorem 3.2. (i) There exists a constant K > 0 and z* g /°° such that A(z*; r) >

K(l - r2)~3/2 for all 0 < r < 1.

(ii) For every decreasing, continuous function a(r) with a(l) = 0, there exists

z* g c0 and a constant K > 0 such that A(z*; r) ^ K(l - r2)~3/2a(r) for all 0 < r

< 1.

Proof. For every z g /<*>, Dunford and Schwartz [2, II. 3.15, IV. 8.5],

A(z; r) = sup f b(e',)e-'jt{e,'z(re,'))dt

where the supremum is over all b g L°°(0, 2tt), with ||è||Lo=(0i2w) < 1. Writing b(e")

= Yf£=_xb(n)e"" we get by Parseval's relation

A(z; r) = sup277 £ (« + l)b(n)z(n)r"

Let c be a positive constant, and consider the series

N

M**)"    E   e'^'^V'"',

which satisfies ||Äw||t«(o,2ff) K CN1/2 for all N, and for some constant C, Zygmund

[5, Chapter V, Theorem 4.7]. Let z* g /» be defined by z*(n) = e»"loê". Then

A(z*; r) ^ 277 £(« + l)D/V(«)z*(«)r"

n = 0

>2trC-lN-l/2 £ («+ l)r"

n-0

for all r and A/". Taking N to be the integer part of (1 - r)"1 we get A(z*; r) >

Ä"(l - r2)"3/2,withA:> 0.

To prove (ii), let z, be defined by zr(n) = ei'"to«"r", then, as before,

2\-3/2
A(zr; r) > 2ttC^N-^2 £ (n + l)r2" > ^(1 - r2)

n = 0

Consequently, (1 — r2)3/2y4(zr; r)/a(r) -» oo, for r -» 1~. By the uniform bounded-

ness principle, there exists z g c0 such that (1 - r2)3/2A(z; r)/a(r) -> oo as r -* 1".

D

Corollary 3.5. span(cd c) ;'s «o/ c/ose¿ in c.

Corollary 3.6. All inclusions in (2.1) are strict.

4. The dual of span(cD c). In this section we show the equivalence of Problems II

and III. Our solution of Problem III then also provides the negative answer to

Problem II. The all and only important step is the identification of the dual of

span(cD c) with all bounded Hankel forms one X c.
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Theorem 4.1. A linear functional ß on span(cdc) is bounded iff there exists a

de/10 such that
oo

(4.1) ß(z) = £ b(n)z(n),       Vz g span(cD c),
n = 0

and the Hankel form
OO 00

(4.2) B(x, y) = £ x(i) £(« + /+ iylb(n + i)y(n)

;=0 n=0

is bounded on c X c.

Proof. Only if. Let ß be a bounded linear functional on span(cd c); then it is

also bounded on span(c0D c0). Let x, y g c0, and define xm g c0 by xm(/) = x(i)

for / < m, and zero otherwise. Then
00

ß(xU y) = limy8(xmn A) = lim £ b(n)(xmO yk)(n)
m.k <*,*„_„

for some b g /°°. Note that the infinite sum is in fact a finite sum. So, ß(z) is given

by (4.1) when z g span(c0D c0). Interchanging the order of summation yields

m k

ß(xmnyk) - £ x(0 £(« + / + l)^« + 0 >>(»)•
i=0 n=0

We denote the right-hand side by Bm k(x, y). From the boundedness of ß the

uniform boundedness of the Bm k follows, and thus upon the successive evaluations

of the limits in B(x, y) = Hmm k^xBm k(x, y), we have that
00 00

B(x, y)=}Z x(i) £ b(n + i)(n + i + 1)"V(»)
(=0 n=0

is well defined, and is a bounded bilinear form on c0 X c0. It is now a standard

exercise to show that the recipes (4.1-4.2) for ß and B apply also on span(cd c) and

c X c, and that £ is a bounded bilinear form one X c.

The //part is substantially similar to the above, and is left to the reader.    D

Corollary 4.2. Problems II and III are equivalent.

Proof. The only complication is whether a bounded Hankel form on c X c is also

bounded on l°° X I00 (and is given by the "same" recipe), but this is quite

straightforward. Otherwise, the corollary is a consequence of the fact that the dual of

c (or a closed subspace thereof) is I1 (or a quotient space of l\ Dunford and

Schwartz [2, II, 3.11]). Note that if span(cD c) is a closed subspace of c, it equals c,

since it is dense in c, see Lemma 2.1.

5. Final remarks. With regard to Problem I, a good partial success would be to

establish whether c D c is a linear space or not. If c D c is to equal c, it had better be

one. The necessary conditions of Lemma 3.1 (hi) cannot distinguish cDc from

span(cDc), so they are useless in settling this question. Another question is as

follows: We have shown that xC\ X ¥= X for X = c and l°°. Are there interesting

sequence spaces X for which there is equality, or for which XC\ X is a linear space?
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