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ON THE DISTORTION OF «DIMENSIONAL

QUASICONFORMAL MAPPINGS

MATTI vuorinen

Abstract. A new upper bound c(n, K) for the linear dilatation of a A'-quasiconfor-

mal mapping of a domain in R" is proved. This upper bound substantially improves

the previously known »-dimensional bound and it is asymptotically sharp when

n = 2.

1. Introduction. In this paper we shall prove some theorems about the distortion of

quasiconformal mappings defined on the «-dimensional Möbius space R" = R" U

(oo), n > 2, equipped with the spherical metric q,

q(x, y) = \x-y\{l +|xj )     (l+M)      ;      x*oo*_y,

/ / ,2\ —1/2
q(x,oo) = (1 +|x| )        ;        x g R".

Besides the spherical metric we shall often require the Poincaré metric of R"+ =

((x,,..., x„) G R": xn > 0} denoted by p or pR,,.

In his recent book, A. F. Beardon [B, p. 42] proved the following theorem which

yields the sharp Lipschitz constant of a Möbius transformation in the spherical

metric.

1.2. Theorem. ///: R" -* R" is a Möbius transformation andf*: R" + l -* R" + 1 is

its Poincaré extension withf*R"++l = R"++\ then

L,p(/) = sup ?(/(*>'/<*>) = exPpfir,(,„ + 1,/*(e„+1)).
x*y H\X,y)

We shall extend this result to the case of quasiconformal mappings. Since

quasiconformal mappings are locally Holder continuous with an exponent which

may be less than one, the above supremum may be infinite in the case of these

mappings. In order to circumvent this technical difficulty we introduce

(1.3) 8f= inf{q(x,y): q(f(x),f(y)) > 1/2} g [0,1]

whenever /: R" -* R" is a continuous mapping. Then, if / is a Möbius transforma-

tion,

Lip(/)<l/ó><2Lip(/)
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(see Corollary 2.12). Assume now that /: R" -» R" is a AT-quasiconformal mapping

and let /*: R"+x -» R"+1 be its K *-quasiconformal extension with K * = K*(n, K)

(see Tukia and Väisälä [TV]). We shall prove the following quasiconformal version

of Theorem 1.2.

1.4. Theorem. ///: R" -» R" is a K-quasiconformal mapping, /*: R" + l -> R" + l

is its extension as above and 8¡ is as in (1.3), then

(1) q(f(x),f(y))^(Xn/]ÍJ)(q(x,y)/8fr, where a = /rVd-0 and X)i is a

number depending only on n.

Moreover,

(2) ax < exppR„*i(en + x,f*(en+x)) < a2, where ax and a2 are positive numbers

depending only on n, K*, and ¿y.

Let G be a domain in R" and let /: G -» R" be a continuous mapping. The linear

dilatation of / at x g G is defined as

H(x,f) = limsup L.\Xj/r],
r^o      l(x,f,r)

where for r g (0, d(x,ZG)),

L(x,f,r) = max{|/(z) -/(x)|: \z - x\ = r),

l(x,f,r) = min{|/(z) - f(x)\: \z - x|= r).

The main result of this paper is

1.5. Theorem. Let G be a domain in R" and let f; G -* fG c R" be a K-quasicon-

formal mapping. Then

(1.6) H(x,f) < 1 + t~1(t(1)/K) = c(n,K),

where r(s) stands for the capacity of the Teichmüller ring in R".

For n = 2, A. Mori [M, pp. 61-62] proved a result similar to Theorem 1.5 and his

result was generalized to the higher dimensional case by F. W. Gehring [Gl, p. 371],

however, with a constant d(n, K)> c(n, K). For « = 2 the best possible constant

X(K) in Theorem 1.5 was found by O. Lehto, K. I. Virtanen and J. Väisälä [LVV, p.

8]. The constant c(n, K) in (1.6) seems to be the smallest constant applicable to all

dimensions n ^ 2. In the particular case n = 2 it is asymptotically sharp, i.e.

c(2, K)/X(K) -» 1 as K ^ oo while d(2, K)/X(K) -* 16 as K -> oo (see

(3.4)—(3.11)). Several other inequalities relating c(n, K), d(n, K) and X(K) to each

other will be proved elsewhere [AW]. By [AW], 10c(n,K) < d(n, K) for n > 2.

Finally, we remark that Theorem 1.5 can be immediately extended to the case of

quasiregular mappings in R", n > 2 (see Remark 3.2 below). As a result, one obtains

an upper bound for the linear dilatation of these mappings, which improves the

previously known bound due to Yu. G. Reshetnyak [R, Theorem 1, p. 1312] and O.

Martio, S. Rickman and J. Väisälä [MRV, Theorem 4.5, p. 19].

2. Preliminary results. We shall adopt the relatively standard notation and

terminology of [V]. The coordinate unit vectors in R" are ex,...,en. If x,y e R",

then we denote [x, y] = {tx + (1 - t)y:  0 < < < 1}  and similarly for open or
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half-open segments. If x g R"\ {0}, then [x, oo) = [ux: u > 1}. For x G R" and

r>0 let B"(x, r) = {z g R": \x - z\ < r}, S"~\x, r) » 95"(x, r), £"(/•) =

5"(0, r), S"'"1^) = 35"(r), 5" = B"(l), and Sn_1 = 95".

For the definition and some properties of the modulus M(A) of a curve family

A the reader is referred to [G3, V]. If E, F, G are subsets of R" or R", then

A(E, F; G) stands for the family of all curves joining E to F in G (see [V, p. 21]). If

G = R" or G = R" we denote A(E, F; G) = A(E, F). If G and G' are domains in

R" or Ä", £, F a G, and if /: G -» G' is a AT-quasiconformal mapping, then

fA(E, F; G) = A(fE,fF; G') and (cf. [V, 13.1])

(2.1) M(A(E,F; G))/K < M(A(fE,fF; G')) ^KM(A(E,F; G)).

A ring in R" is a domain such that its complement has exactly two components.

By definition, the complementary components of the Teichmüller ring RT(s) are

[ — ex,0] and [sex, oo), s G (0, oo), while those of the Grötzsch ring RG(s) are B" and

[sex, oo), j g (1, oo). The capacities of these rings, denoted by capRT(s) and

capRG(s) respectively, are strictly decreasing functions of s. Some properties of

cap RT(s) are given in [G3]. A basic formula is

(2.2) capÄc(r) = 2"-lcapRT(t2 - 1)

for t g (1, oo). We denote t(s) = capRT(s). The well-known equality t(s) =

M(A([-ex,0], [sex, oo))) will often be used.

2.3. Lemma. Let G be a domain in R" with 0, x, y g G and assume 0 < \x\ < \y\ <

d(0,dG)/2. Ifr(s) = capRT(s), then

(1) M(A([0, x], [y, oo); G)) < T(\y[/\x\ - 1).

If E and F are continua with 0, x g E c 5"(|x|), y g F, F n 3G # 0, /«e«

(2) M(A(E,F; G)) > r(\y\/\x\) - 2co„_1(log(¿(0,3G)/|^|))1-".

Proof. Part (1) is a recent result due to F. W. Gehring and it will be published

elsewhere [Vu2, 2.58].

To prove part (2) perform a spherical symmetrization of E and F in the positive

and negative x,-axis, respectively, with center at 0. Denote the symmetrized sets by

E*, F*. Then by [G3, Theorem 3, p. 225],

M(A(E,F; R")) > M(A(E*,F*; R")).

Also by [V, 6.2, 7.5],

M(A(E*,F*; R")) + „„Jlog^M)     \T(\y\/\x\),
\ \x\      I

M(A(E,F; G)) + o>n_xllogd{°'dG))    " > M(A(E,F; R»)).

In combination, these inequalities yield the desired lower bound (2).

2.4. Möbius transformations of B". As shown in [A, p. 24] (see also [B, pp. 36-42])

a sense-preserving Möbius transformation Ta: R" -» R" with TaB" = B" and Ta(a)

= 0, where a g B" is a prescribed point, can be constructed as follows. If a = 0, set
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Ta = I (identity). If a&Bn\{0}, define Ta(x) = (pa ° aa)(x), where aa is an

inversion in the sphere S"^1(a/\a\2, r), r = y\a\~2 _ 1 > orthogonal to S"~\ i.e.

(2.5) aa(x) = a* + r2(x- a*)*,        u* = u/\u\2

and pa is a reflection in the (n - l)-dimensional plane orthogonal to a containing 0.

Conversely, a prescribed Möbius transformation g: R" -» R" with gB" = B" has a

canonical representation [A, p.24; B, pp. 36-42]

(2.6) g = k°Ta;       ¿gO(«), ûG B",

where O(n) is the set of all orthogonal mappings. We shall employ the Poincaré

metric p of B" defined by the element of length dp = 2\dx\/(l - \x\2). The

Poincaré metric of the halfspace R"+ is defined by dp = \dx\/xn.

2.7. Möbius transformations of R". We shall identify R" with the Riemann sphere

S"(e„+1/2,l/2) c R" + 1 via the Stereographic projection m: R" -> S"(en + x/2,l/2),

(2.8) rr(x) = en + x+(x-en + xy.

The stereographic projection can be used to define the spherical (chordal) metric q,

see (1.1), by the formula q(x, y) = \ir(x) - ir(y)\ for x, y g R". For x g R" we

define x g R" such that tt(x) and tt(x) are antipodal (diametrically opposite)

points on the Riemann sphere, i.e. Ö = oo, oo = 0, and x = — x/|x|2 for x g

R"\{0}. Forx G Rn, r g (0,1), let Q(x,r)= (z G R": q(z,x) < r). By virtue of

the Pythagorean theorem Q(x, r) = R"\Q(x,^l - r2). Hence ttQ(x, 1/v^2) is a

hemisphere of the Riemann sphere, x g R". We call a Möbius transformation

preserving all spherical distances a spherical isometry. We denote by hz: R" ~* R" a

sense-preserving spherical isometry such that h,(z) = 0 [V, 12.2]. It follows from

(1.1) that for /-G (0,1)

(2.9) h:Q(z,r) = Q(0,r) = Bn(w(r));        w(r) = r/{\ - r2,

for all z g R". We shall identify R" with the subset {x g Rn + l: xn + x = 0}_U {oo}

of R*+1. Each Möbius transformation /: R" -» R" has an extension /*: R" + 1 -*

Ä"+1, the so-called Poincaré extension [B, p. 33], such that /* is a Möbius

transformation with f*R"++l = R"++l and f*\R" = /.

For a continuous mapping /: R" -* R" and t g (0,1] we define

(2.10) 8¡ = inf{q(x,y); q(f(x),f(y)) = t,x,y<=R").

If 8f is the number in (1.3), then clearly 8f = 8j/2.

2.11. Lemma. Let f: R" -► R" be a Möbius transformation, letf*; R" + l -» R"+1

be its Poincaré extension, and let p = pR^+i(en + x, f *(eM + 1)). TTitvj

ie"p < 6/ < 2t/(e" + e~p)

for all t G (0,1].

Proof. The first inequality follows directly from Theorem 1.2 and from the

definition (2.10). For the proof of the second inequality we note that the spherical

distances change under / in the same way as the euclidean distances change under
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wf°m~l, where tt is the Stereographic projection (2.8). Then tt ° f ° tt~x is a

Möbius self-mapping of the Riemann sphere. By performing an auxiliary translation

followed by a stretching with factor 2 we may assume that / is initially defined on

5"' and maps onto 5"' C R" + 1. Formula (2.6) applied to the Poincaré extension of /

shows that /= k « Ta\S", where k g 0(n + 1), pB» + i(0, a) = p, Ta = pa° aa. Be-

cause k and pa are euclidean isometries, it follows that the change of distances

under / is caused by the inversion oa. Fix x„ y, e S" such that |au(x,) - aa(y,)\ = 2t

and

\x, - a*\ = \y, - a*\^\aa(x,) - a*\,

where a* = a/\a\2 and such that the vectors x, — a*, a, y, - a* are coplanar.

Denote u, = \xt - a*\ and u2 = \au(xt) - a*\. By elementary geometry, uxu2 =

\a\~2 — 1. The properties of similar triangles yield

\x,~ y,\= 2uxt/u2 = 2t(\a\     -l)/u\.

From the choice of x, it follows that u\ = 1 + |a|~2 + 2|a|_1yl _ t2 and hence

2(|«f2-l)/ 4t
y,\<

i+laf2      «* + «-'

because p = log((l + |a|)/(l - |a|)).

2.12. Corollary. If 8f is as in (1.3) and f is as in Lemma 2.11, then

e'"/2^8f^ l/(e» + e-"),       Lip(/) < I/o) < 2Lip(/).

Proof. The proof follows from Lemma 2.11 and the fact that Lip(/) = e" (cf.

1.2).

3. The main results.

Proof of Theorem 1.4(1). Let h,: R" -» R" be a spherical isometry as in (2.9)

with hz(z) = 0. Because the inequality 1.4(1) is invariant under spherical isometries,

we may as well assume x = 0, f(x) = 0, by considering g = «/u) ° / ° h~l (note

that 8f = 8 ). By (2.9) and the definition of 8f we see that / maps B"(w(8^)) into

B"(l/ ¿3). By the quasiconformal version of the Schwarz lemma [G3, V, 18.2; Vu2,

3.3] we obtain for x, y G R" with q(x, y) < óy,

^q(f(x)J(y))<w{q{f{^m
w(l/2)

<xMi[x.y))\\xJq(x1yl

where A„ is a positive constant depending only on n and the function w is as in

(2.9). Because 4 < X„ < e" (cf. [GO, p. 61, (3.3)]), the above inequality holds

trivially for q(x, y) > 6\, and the proof is thereby completed.

Proof of Theorem 1.5. We may assume x = 0 =/(x). Fix r g (0, d(0, dG)/2)

and choose xr,yr g S"~l(x, r) such that |/(xr) -/(x)| = L(x,f,r) and \f(yr) -

f(x)\ = l(x,f,r). Let T' - A([0, f(yr)], [f(xr), oo); /G) and T =tlV. It follows
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from (2.1) and Lemma 2.3(1) that

M(T) < KM(T') < Kr{(\f(xr) \/\f(yr) |) - l)

and from Lemma 2.3(2) that

«(r))t[i)-^«""'

Letting r -» 0 yields t(1)/.tí < r(H(0,f) - 1). The inequality (1.6) follows, since t

is strictly decreasing.

3.1. Corollary. Let f: R" -^ R" be a K-quasiconformal mapping with f(0) = 0.

Then

\f(x)\^c(n,K)\f(y)\

for \x\ < |_y|, where c(n, K) is as defined in (1.6).

Proof. The proof is similar to the above proof.

3.2. Remark. With small changes the proof of Theorem 1.5 and Theorem 3.2 in

[MRV] yield a similar upper bound for the linear dilatation of a quasiregular

mapping: if /: G -» R" is quasiregular and x g G, then

(3.3) H(x,f)^c(n,i(x,f)K0(f)),

where i(x,f) is the local topological index of / at x (see [MRV, p. 11]) and K0(f)

is the outer dilatation of / (see [MRV, p. 14]). The inequality (3.3) improves the

bounds of Yu. G. Reshetnyak [R, Theorem 1, p. 1312] and O. Martio, S. Rickman

and J. Väisälä [MRV, Theorem 4.5].

Denote y(s) = capRc(s). In view of (2.2) the constant c(n, K) in (1.6) can also

be written as

(3.4) c(n,K)=[y-^y(j2)/K)}2=[y\2»^(l)/K)]2.

In particular, c(n, 1) = 2. It is easy to see that (cf. e.g. [Vu2, 2.16])

y(s) < w„_x(log(s + vV-l))1"",

y^^coshlK.,/")17'"-1'],

where w„_, is the area of S"1-1. Now (3.4) and (3.5) give

(3.5)

(3.6)       c(n,K)^ cosh2
Kateil

i/(n-i)

= cosh2 lf*",,-l
2     T(l)

l/d-i)

Y(Y2)/

A. Mori [M, p. 61] proved Theorem 1.5 for n = 2 with the constant e7,K and an

«-dimensional version of his result due to F. W. Gehring [Gl, Lemma 8, p. 371]

yields Theorem 1.5 for « > 2 with the constant

i/(i-i)l
(3.7) d(n, K) = exp

Ku,„

t(1)
d(2,K) = e"K.

It follows from (3.6) that c(«, K) is strictly smaller than d(n, K).
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For « = 2 the best possible constant X(K) in Theorem 1.5,

(3.8) X(K) = j-e"K-j + 8(K);        8(K) G (0,2e""*),

was found by O. Lehto, K. I. Virtanen and J. Väisälä [LVV, p. 12]. We are now

going to compare the numerical values of c(2, K) and X(K). Making use of [LV, p.

65] we observe that (3.5) can be improved for « = 2 as follows (here y2(s) is y(s)

with « = 2):

4_  2I

y2(s) < 2ff/log s[l + Vl ~s~2)    < 2^Aog(s + 3vV - 1 ),
(3.9) L v ' J

y2-'(")< (^ß2 + 8 - j8)/8;        ß = exp(2ir/u).

By (3.4) and (3.9) we obtain because y2(v/2 ) = 4 [LV, p. 63, (2.8)]

(3.10) c(2,K)4, ((3]lß2 + 8 - ß)/%f;        ß = exp(irtf/2).

It follows from (3.8) and (3.10) that c(2, K)/X(K) -» 1 as K -» 00, and that for all

K> 1,

(3 n) c(2,^) < (c2/64) exp(77ÜO < exp(trK)/10,

c = -1 + 3y1 + 8e"" = 2.480144....

The proof in [LVV] was based on the Teichmüller theory, while the proof of

Theorem 1.5 was a straightforward application of the modulus method. The crucial

novel feature in its proof is the application of F. W. Gehring's new modulus

inequality in Lemma 2.3(1) above.

By a theorem of Tukia and Väisälä [TV] for « > 2 and K > 1 there exists a

number K * depending only on « and K such that each ÄT-quasiconformal mapping

/: R"-*R" has a K*-quasiconformal extension /*: ^"+1^^"+1 such that

f*\dR'\+l = f and f*R"++1 = R"++\ We are now going to prove the second part of

Theorem 1.4.

3.12. Lemma. Let f and f* be as above and let 8, be the number defined in (1.3).

Then 8f > 0 and there exist strictly increasing functions ßy. [0, 00) -> [0, 00), j = 1,2,

depending only on n and K such that

ßx(p)^l/8f^ß2(p),

where p = pR*+i(e„+l,f*(e„+1)).

Proof. By performing an auxiliary Möbius transformation « of Rn+l mapping

R"++1 onto B" + l and e„ + x onto 0, we may assume that /: S" -» S" initially. Note

that 2q(x, y) = \h(x) - h(y)\ for all x, y G R".

We shall first prove the left inequality. Let /*(0) = re, e G S"-1, r > 0. Then

(1 + r)/(l - r) = ep. Fix y0 g S" such that \y0 + e\ = 1 and let J' be the shorter

arc of a circle with radius one in S" connecting —e with y0. Then J = flJ' is an

arc on S" with d(J) > 28,. Let A be a continuum connecting 0 with S". From a

symmetry property of the modulus [G2, Lemma 1] and from some well-known

inequalities (see [Vul, 1.10,1.11 or V, pp. 30-40]) it follows that

(3.13) M(A(A: J; B" + l)) > 2-13-"-4(log2)C„ + 1ô) = a„8f,
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where an is a positive number depending only on «. It follows from [V. 7.5] that

(3.14) M(A([re,e],y'))<^(logT47)   " = "„(log ̂ (1 + e")

Applying (3.13) with A = f*~l[re, e] we obtain by (2.1)

«„^«„(log^il + e'))    'k*,

from which the left inequality of the lemma follows.

For the proof of the right inequality we fix tjeS" such that |x — y\ = 28f and

|/(x) — f(y)\ = 1. Such points exist by the definition of 8f. Let J be the shorter

circular arc of radius one in S" connecting x with y, and let z be the midpoint of J.

If \x - z\< 1, then we obtain by [V, 7.5]

(3.15) M(A(/,[0,-z]))<<Jlog—^)      <cJlog^

and if |x - z| g [1, y2], then rjy ̂  \[3 /2 and we obtain

28,
(3.15)' M(A(J, [0, -*])) < W„(logv^)"" « ^«.(WT)"".

We shall next prove a lower bound for M(f*A(J, [0, -z])). Let /*(0) = se, e e S".

Because 1 - s = 2/(1 + e") and d(fJ) > 1 - s, we get by [Vul, 1.10, 1.11 and G2,

Lemma 1],

(3.16) M(A(//,/*[0, -z])) 3* 2-13-"-4c„ + 1(log2)2/(l + e")

= dn/(l + e").

Because / is quasiconformal, the right inequality of the lemma follows from (3.15),

(3.15)', (3.16) and (2.1).
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