COMPARISON THEOREMS FOR SECOND ORDER DIFFERENTIAL SYSTEMS

W. J. KIM

ABSTRACT. Comparison theorems are proved for second order linear differential systems of the form $(R_i, y')' + P_i, y = 0$, where R_i and P_i are continuous $n \times n$ matrices and R_i is invertible, i = 1, 2.

Let R and P be $n \times n$ matrices with real elements which are continuous and let R be invertible on an x-interval $[a, \omega)$. We shall consider the second-order vector differential equation

(E)
$$(R(x)y')' + P(x)y = 0.$$

If (E) has a nontrivial solution v satisfying v(b) = v'(c) = 0 [v'(b) = v(c) = 0] for some b and c, $a \le b < c < \omega$, we define $\eta(b)$ [$\varphi(b)$] to be the infimum of ξ , $b \le \xi < \omega$, such that there exists a nontrivial solution u of (E) satisfying $u(b) = u'(\xi) = 0$ [$u'(b) = u(\xi) = 0$]. Otherwise, we put $\eta(b) = \omega$ [$\varphi(b) = \omega$]. If $\eta(b) < \omega$ [$\varphi(b) < \omega$], then (E) has a nontrivial solution y such that $y(b) = y'(\eta(b)) = 0$ [$y'(b) = y(\varphi(b)) = 0$]. $\varphi(b)$ is called the *right-hand focal point* of b. In recent years some authors have referred to $\eta(b)$ as a focal point of b; however, this appears to be inconsistent with the long-term usage of "focal" [13]. In Picone's terminology, $\eta(b)$ is a right-hand pseudoconjugate of b. We shall henceforth call $\eta(b)$ the *right-hand pseudoconjugate* of b.

Morse [11] was the first to obtain generalizations of the classical Sturm separation and comparison theorems for the second-order vector differential equations

$$(E_i)$$
 $(R_i(x)y')' + P_i(x)y = 0, \quad i = 1, 2,$

where R_i and P_i are $n \times n$ matrices with continuous and real elements and R_i is invertible on $[a, \omega)$, i = 1, 2. Other comparison results of a different nature have been recently proved by Ahmad and Lazer [1-3] for the case $R_i = I$, and also by others [6, 10, 14, 15] under various assumptions on R_i and P_i . In [15] Tomastik also considered comparison theorems for the right-hand and left-hand focal points. It is to be noted that in most of these studies the case $P_1 \equiv P_2$ is specifically excluded.

Received by the editors May 11, 1984 and, in revised form, October 18, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 34C10.

Key words and phrases. Comparison theorems, second order linear differential systems, focal and pseudoconjugate points.

288 W. J. KIM

Let $\eta_i(b)$ [$\phi_i(b)$] be the right-hand pseudoconjugate [the right-hand focal point] of b for (E_i) , i=1,2. The purpose of this paper is to present theorems comparing $\eta_1(b)$ [$\phi_1(b)$] and $\eta_2(c)$ [$\phi_2(c)$], where b and c are not necessarily equal. For the special case $R_1 \equiv R_2$, $P_1 \equiv P_2$, these results become "separation theorems," from which we can further deduce that $\eta_i(x)$ [$\phi_i(x)$] is a nondecreasing function of x.

The Riccati equation technique [5, 8, 9, 12] adapted to the second-order system (E) is used to establish the main theorems.

THEOREM 1. Let b be a point on the interval $[a, \omega)$. Every nontrivial vector solution y of (E) with y(b) = 0 has the property that $y'(x) \neq 0$, $b \leq x < \omega$, if and only if the matrix Riccati system

(MR)
$$S' = R^{-1} + SPS, \quad S(b) = 0,$$

has a solution on $[b, \omega)$.

PROOF. Let Y be the solution of the matrix system

(M)
$$(R(x)Y')' + P(x)Y = 0, Y(b) = 0, Y'(b) = I.$$

To prove the necessity, let α be an arbitrary nonzero constant vector. Then $y(x) \equiv Y(x)\alpha$ is a nontrivial solution of (E) with y(b) = 0. Since $y'(x) = Y'(x)\alpha \neq 0$, $b \leq x < \omega$, we see that the determinant of Y'(x) does not vanish on $[b, \omega)$. Thus, Y' is invertible on $[b, \omega)$. Since R is also invertible on $[b, \omega)$, so is RY'. Consequently, $S \equiv Y(RY')^{-1}$ is defined and continuously differentiable on $[b, \omega)$ and S(b) = 0. Differentiating S, we obtain $S' = R^{-1} + SPS$, which proves that S is a solution of (MR) on $[b, \omega)$.

For $n \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$, we write $A \ge B$ if $a_{ij} \ge b_{ij}$, i, j = 1, ..., n, and we define

$$\int_{b}^{x} A(t) dt = \left(\int_{b}^{x} a_{ij}(t) dt \right).$$

In order to prove the sufficiency, we require the following lemma.

LEMMA 1. The matrix Riccati equation (MR) has a unique solution S on $J = [b, \eta(b))$. The solution S is continuously differentiable and nontrivial; furthermore, it is nonnegative on J if

(1)
$$R^{-1}(x) \ge 0, \quad P(x) \ge 0, \quad b \le x < \eta(b).$$

PROOF. If $R^{-1} = (t_{ij})$, $P = (p_{ij})$, and $S = (s_{ij})$, the system (MR) is equivalent to the system of n^2 first-order equations

$$s'_{ij} = t_{ij} + \sum_{k=1}^{n} s_{ik} \sum_{l=1}^{n} p_{kl} s_{lj}, \qquad s_{ij}(b) = 0,$$

i, j = 1, 2, ..., n. Evidently, the above system may be cast into a vector equation of the form

(2)
$$s' = f(x, s), \quad s(b) = 0,$$

where s and f are n^2 -dimensional vectors. The vector-valued function f is continuous on $D = \{(x, s): x \in J, |s| < \infty\}$; indeed, it is continuously differentiable on D as a function of s. Therefore, f(x, s) satisfies a Lipschitz condition with respect to s on any compact and convex subset of D (see, e.g., [4, p. 142]) and there exists a unique solution $s \in C'$ of (2) on some interval [b, c], $b < c < \eta(b)$ [7, p. 10]. Hence, the matrix Riccati system (MR) has a unique solution S, continuously differentiable on the interval [b, c]. Let $c_1 = \sup\{c: (MR) \text{ has a unique solution on } [b, c], b < c < \infty$ $\eta(b)$, and let S* be the unique solution of (MR) on $[b, c_1)$. Since the derivative of every nontrivial vector solution y of (E) with y(b) = 0 does not vanish on $[b, \eta(b)]$, it follows from the necessity of Theorem 1 that (MR) has a solution, say S° , on $[b, \eta(b))$; thus, $S^* = S^\circ$ on $[b, c_1)$ by the uniqueness of solutions. If $c_1 < \eta(b)$, we may assume that S^* is defined on $[b, c_1]$ (by setting $S^*(c_1) = \lim_{x \to c_1} S^*(x) =$ $S^{\circ}(c_1)$, if necessary). The solution S^* may then be continued to a right neighborhood $[c_1, c_1 + \varepsilon]$, $\varepsilon > 0$, of c_1 [7, p. 15]. This implies that (MR) has a unique solution on $[b, c_1 + \varepsilon]$, $\varepsilon > 0$, contrary to the choice of c_1 . Therefore, $c_1 = \eta(b)$ and (MR) has a unique solution S on J.

The solution S is continuously differentiable because R^{-1} and P are continuous. Furthermore, S is nontrivial because $R^{-1} \not\equiv 0 - R^{-1}$ is invertible on $[b, \eta(b))$ and it cannot have zero rows or zero columns at any point of $[b, \eta(b))$ —and it may be obtained as the uniform limit of the successive approximations $\{S_i\}$ defined recursively by the formula

$$S_0(x) = 0,$$

$$S_{k+1}(x) = \int_k^x R^{-1}(t) dt + \int_k^x S_k(t) P(t) S_k(t) dt,$$

 $k=0,1,\ldots$, on some interval $[b,d],\ b< d<\eta(b)$ (see, e.g., [7, p. 12]). Due to the inequalities (1), $S_k\geqslant 0$ on $[b,d],\ k=0,1,\ldots$, and therefore the uniform limit $S\geqslant 0$ on [b,d]. Let $d_1=\sup\{d:\ S\geqslant 0\ \text{on}\ [b,d],\ b< d<\eta(b)\}$. Then $S\geqslant 0$ on $[b,d_1)$. We shall prove that $d_1=\eta(b)$. If $d_1<\eta(b)$, then $0\leqslant S<\infty$ on $[b,d_1]$ by the continuity of S. In this case, S may again be represented on some interval $[d_1,e],\ d_1< e<\eta(b)$, as the uniform limit of the successive approximations

$$S_0(x) = S(d_1) \ge 0,$$

$$S_{k+1}(x) = S(d_1) + \int_{d_1}^x R^{-1}(t) dt + \int_{d_1}^x S_k(t) P(t) S_k(t) dt,$$

 $k = 0, 1, \ldots$ Since $S_k \ge 0$ on $[d_1, e]$, $k = 0, 1, \ldots, S \ge 0$ on $[d_1, e]$. We are thus led to the conclusion that $S \ge 0$ on [b, e], contrary to the choice of d_1 . Consequently, $d_1 = \eta(b)$ and $S \ge 0$ on $[b, \eta(b))$.

Returning now to the proof of Theorem 1, we shall first prove that |Y'|, the determinant of Y', does not vanish on $[b, \omega)$ if (MR) has a solution S on $[b, \omega)$. Since |Y'| is continuous and |Y'(b)| = 1 by (M), |Y'| does not vanish on some right neighborhood N of the point b, that is, Y' is invertible on N. Since R is invertible, $Y(RY')^{-1}$ is defined on N and satisfies (MR), as was shown earlier. Due to the uniqueness of solutions of the initial value problem (MR) proved in Lemma 1, we

290 W. J. KIM

have $S = Y(RY')^{-1}$ on N. Suppose that |Y'| vanishes at some point on $[b, \omega)$: Let \tilde{x} be the first point to the right of b at which |Y'| vanishes. Then there exists a nonzero constant vector β such that $Y'(\tilde{x})\beta = 0$. On the interval $[b, \tilde{x})$ we have $S = Y(RY')^{-1}$, which may be written as SRY' = Y; this equality is indeed valid on $[b, \tilde{x}]$ because S, R, Y and Y' are continuous on $[b, \tilde{x}]$. In particular, $S(\tilde{x})R(\tilde{x})Y'(\tilde{x})\beta = Y(\tilde{x})\beta = 0$. But this is absurd since $w = Y\beta$ is a nontrivial solution of (E) and it cannot satisfy the condition $w(\tilde{x}) = w'(\tilde{x}) = 0$. Therefore, |Y'| cannot vanish on $[b, \omega)$.

If y is any nontrivial solution of (E) with y(b) = 0, then there exists a nonzero constant vector γ such that $y = Y\gamma$. Evidently, $y' = Y'\gamma \neq 0$ on $[b, \omega)$ because $|Y'| \neq 0$ on $[b, \omega)$. This completes the proof.

Another result we need for proving comparision theorems is a version of Lemma 3.2 [12], strengthened for the matrix Riccati systems

(MR_i)
$$S' = R_i^{-1} + SP_iS$$
, $S(b) = 0$, $i = 1, 2$.

LEMMA 2. Let R_i and P_i be $n \times n$ matrices with continuous and real elements and let R_i be invertible on an interval $[a, \omega)$, i = 1, 2. Assume that

(3)
$$0 \leqslant \int_{b}^{x} R_{2}^{-1}(t) dt \leqslant \int_{b}^{x} R_{1}^{-1}(t) dt, \quad 0 \leqslant P_{2}(x) \leqslant P_{1}(x), \quad b \leqslant x < \omega,$$

for some b, $a \le b < \omega$. If there exists a nonnegative differentiable matrix S defined on $[b, \omega)$ satisfying the matrix inequality

(4)
$$S' \ge R_1^{-1} + SP_1S, \quad S(b) = S_b \ge 0,$$

then the matrix differential equation

(5)
$$T' = R_2^{-1} + TP_2T, T(b) = T_b, S_b \ge T_b \ge 0,$$

has a continuous solution $T \leq S$ on $[b, \omega)$.

PROOF. The existence of T is proved by the iteration procedure

(6)
$$T_0(x) = S$$
, $T_{k+1}(x) = T_b + \int_b^x R_2^{-1}(t) dt + \int_b^x T_k(t) P_2(t) T_k(t) dt$, $b \le x \le \omega$, $k = 0, 1, \dots$ (cf. [12]). For $k = 0$, $0 \le T_1(x) = T_b + \int_b^x R_2^{-1}(t) dt + \int_b^x S(t) P_2(t) S(t) dt$ $\le S_b + \int_a^x R_1^{-1}(t) dt + \int_b^x S(t) P_1(t) S(t) dt \le S(x) = T_0(x)$,

due to (3), (4), (5) and the nonnegativity of S; hence, T_1 is continuously differentiable and $0 \le T_1 \le T_0$ on $[b, \omega)$. From (6) we see that $T_{k+1} \ge 0$ if $T_k \ge 0$. Also, for $k = 0, 1, \ldots$,

$$T_{k+1}(x) - T_k(x) = \int_{k}^{x} \left[T_k(t) P_2(t) T_k(t) - T_{k-1}(t) P_2(t) T_{k-1}(t) \right] dt,$$

where the integrand is nonpositive if $0 \le T_k \le T_{k-1}$. Therefore, $0 \le T_{k+1} \le T_k$ if $0 \le T_k \le T_{k-1}$. Since $0 \le T_1 \le T_0$, the sequence of continuously differentiable matrices $\{T_k\}$ decreases monotonically and is bounded below by zero. Furthermore,

the sequence is equicontinuous on any compact subinterval K of $[b, \omega)$. To show this, let ||A|| be the norm of an $n \times n$ matrix $A = (a_{ij})$ defined by $||A|| = \sum_{i,j=1}^{n} |a_{ij}|$. Let M > 0 be a constant such that $||R_2^{-1}||$, $||P_2||$, and $||T_k||$, $k = 0, 1, \ldots$, are all bounded by M on K. From (6),

$$T_{k+1}(x_2) - T_{k+1}(x_1) = \int_{x_1}^{x_2} R_2^{-1}(t) dt + \int_{x_1}^{x_2} T_k(t) P_2(t) T_k(t) dt,$$

 $x_1, x_2 \in K, k = 0, 1, \dots$ Thus,

$$||T_{k+1}(x_2) - T_{k+1}(x_1)|| \le \int_{x_1}^{x_2} ||R^{-1}(t)|| |dt| + \int_{x_1}^{x_2} ||T_k(t)P_2(t)T_k(t)|| |dt|$$

$$\le (M + M^3)|x_2 - x_1|, \qquad x_1, x_2 \in K,$$

 $k=0,1,\ldots$, and this implies that the sequence $\{T_k\}$ is equicontinuous on K. Since it is also uniformly bounded on K, $\{T_k\}$ converges uniformly on K. The uniform limit $T=\lim_{k\to\infty}T_k$ is a continuous solution of (5) and $T\leqslant T_0=S$ on K. Since this conclusion holds for every compact subinterval of $[b,\omega)$, it holds for $[b,\omega)$.

We are now ready to prove a comparison theorem for $\eta_i(x)$, the right-hand pseudoconjugate function of (E_i) , i = 1, 2, defined on $[a, \omega)$.

THEOREM 2. Let b be a point on the interval $[a, \omega)$. If

(7)
$$R_1^{-1}(x) \ge 0$$
, $\int_b^x R_1^{-1}(t) dt \ge \int_b^x R_2^{-1}(t) dt \ge 0$, $P_1(x) \ge P_2(x) \ge 0$,

 $b \le x < \omega$, then $\eta_1(b) \le \eta_2(b)$. If the stronger condition

(8)
$$R_1^{-1}(x) \ge R_2^{-1}(x) \ge 0, \quad P_1(x) \ge P_2(x) \ge 0,$$

 $a \le x < \omega$, holds, then $\eta_1(b) \le \eta_2(c)$, $a \le b \le c < \omega$.

PROOF. Every nontrivial solution y of (E_1) with y(b) = 0 has the property that $y' \neq 0$ on $[b, \eta_1(b))$. Hence, the corresponding matrix Riccati equation (MR_1) has a solution S on $[b, \eta_1(b))$ by Theorem 1. The solution S is nontrivial and nonnegative on $[b, \eta_1(b))$ by Lemma 1. According to (7) and Lemma 2, the matrix Riccati system (MR_2) associated with (E_2) has a continuous solution T on $[b, \eta_1(b))$. Therefore, by Theorem 1, every nontrivial solution vector w of (E_2) with w(b) = 0 has the property that $w' \neq 0$ on $[b, \eta_1(b))$; consequently, $\eta_1(b) \leq \eta_2(b)$.

If (8) holds and c is an arbitrary point of $[a, \omega)$, then

$$\int_c^x R_1^{-1}(t) dt \geqslant \int_c^x R_2^{-1}(t) dt \geqslant 0, \qquad a \leqslant c \leqslant x < \omega.$$

For $a \le b \le c < \eta_1(b)$, (MR_1) has a nontrivial solution S which is continuous and nonnegative on $[b, \eta_1(b))$ by Theorem 1 and Lemma 1. Applying Lemma 2 to the interval $[c, \eta_1(b))$, we conclude that the system $T' = R_2^{-1} + TP_2T$, T(c) = 0, has a matrix solution T on $[c, \eta_1(b))$. Again by Theorem 1, if v is any nontrivial solution of (E_2) with v(c) = 0, then v' does not vanish on $[c, \eta_1(b))$. Therefore, $\eta_1(b) \le \eta_2(c)$, $a \le b \le c < \eta_1(b)$.

If, on the other hand, $\eta_1(b) \le c < \omega$, it is obvious that $\eta_1(b) \le \eta_2(c)$. This completes the proof.

292 W. J. KIM

When we put $R_1=R_2=R$ and $P_1=P_2=P$ in Theorem 2—many comparison theorems for the second-order systems (E_i) , i=1,2, fail to hold for this case—we obtain the following "separation theorem": If R is invertible, $R^{-1} \ge 0$, and $P \ge 0$ on $[a,\omega)$, then the equation (E) has no nontrivial solution y such that $y(x_1)=y'(x_2)=0$, $b \le x_1 \le x_2 < \eta(b)$, for any b, $a \le b < \omega$. This result is equivalent to the statement that $\eta(x)$ is a nondecreasing function of x on $[a,\omega)$.

Let $\phi_i(x)$ be the right-hand focal point of x for the equation (E_i) , i = 1, 2. There are analogous comparison results for $\phi_i(x)$, i = 1, 2, which we summarize below.

Let U be the solution of the matrix system

$$(R(x)U')' + P(x)U = 0, U(b) = I, U'(b) = 0,$$

for some b, $a \le b < \omega$. Put $V = -RU'U^{-1}$. If every nontrivial solution y of (E) with y'(b) = 0 does not vanish on $[b, \omega)$, then U is invertible on $[b, \omega)$. Thus, V is defined on $[b, \omega)$ and satisfies thereon

(MR')
$$V' = P + VR^{-1}V, V(b) = 0.$$

This proves the necessity part of the following theorem.

THEOREM 3. Suppose that R and P are $n \times n$ matrices with continuous and real elements and that R is invertible on an interval $[a, \omega)$. Let b be a point on $[a, \omega)$. Every nontrivial solution vector y of (E) with y'(b) = 0 does not vanish on $[b, \omega)$ if and only if the matrix Riccati system (MR') has a solution on $[b, \omega)$.

Sufficiency of this theorem may be proved in a manner similar to the corresponding proof of Theorem 1, using the following analogue of Lemma 1.

LEMMA 3. The matrix Riccati equation (MR') has a unique solution on $[b, \phi(b))$, which is continuously differentiable. The solution is nontrivial if $P \neq 0$ and it is nonnegative on $[b, \phi(b))$ if $R^{-1}(x) \geq 0$, $P(x) \geq 0$, $b \leq x < \phi(b)$.

Using Theorem 3, Lemma 2 (with P_i and R_i^{-1} interchanged in (3), (4) and (5), i = 1, 2) and Lemma 3, we can similarly prove the following comparison theorem for $\phi_i(x)$.

THEOREM 4. If, for some b, $a \le b < \omega$,

$$P_1(x) \ge 0, \qquad \int_h^x P_1(t) dt \ge \int_h^x P_2(t) dt \ge 0, \qquad R_1^{-1}(x) \ge R_2^{-1}(x) \ge 0,$$

 $b \le x < \omega$, then $\phi_2(b) \ge \phi_1(b)$. Moreover, if

$$P_1(x) \geqslant P_2(x) \geqslant 0, \qquad R_1^{-1}(x) \geqslant R_2^{-1}(x) \geqslant 0,$$

 $a \le x < \omega$, then $\phi_2(c) \ge \phi_1(b)$, $a \le b \le c < \omega$.

Putting $P_1 = P_2 = P$ and $R_1 = R_2 = R$ in Theorem 4, we again obtain a "separation theorem", which is equivalent to the statement that $\phi(x)$ is a nondecreasing function of x.

REFERENCES

- 1. S. Ahmad and A. C. Lazer, On the components of extremal solutions of second order systems, SIAM J. Math. Anal. 8 (1977), 16-23.
- 2. _____, An N-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems, SIAM J. Math. Anal. 9 (1978), 1137–1150.
- 3. _____, On an extension of Sturm's comparison theorem to a class of nonselfadjoint second-order systems, Nonlinear Anal. 4 (1980), 497-501.
 - 4. G. Birkhoff and G. C. Rota, Ordinary differential equations, 3rd ed., Wiley, New York, 1978.
- 5. G. J. Butler and L. H. Erbe, Nonlinear integral Riccati systems and comparison theorems for linear differential equations, SIAM J. Math. Anal. 14 (1983), 463-473.
 - 6. S. Cheng, Nonoscillatory solutions of $x^{(m)} = (-1)^m Q(t) x$, Canad. Math. Bull. 22 (1979), 17–21.
- 7. E. A. Coddington and N. Levinson, *Theory of ordinary differential equations*, McGraw-Hill, New York, 1955.
 - 8. E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252.
- 9. W. J. Kim, Generalized comparison theorems for disfocality types of the equation $L_n y + py = 0$, J. Math. Anal. Appl. 109 (1985), 182–193.
- 10. M. K. Kwong, Matrix Riccati inequality and oscillation of second order differential systems, Lecture Notes in Math., vol. 1032, Springer-Verlag, New York, 1982.
- 11. M. Morse, A generalization of the Sturm separation and comparision theorems in n-space, Math. Ann. **103** (1930), 52–69.
- 12. Z. Nehari, Nonlinear techniques for linear oscillation problems, Trans. Amer. Math. Soc. 210 (1975), 387-406.
- 13. W. T. Reid, Sturmian theory for ordinary differential equations, Appl. Math. Sci., vol. 31, Springer-Verlag, New York, 1980.
 - 14. H. L. Smith, A note on disconjugacy for second order systems, Pacific J. Math. 89 (1980), 447-452.
- 15. E. C. Tomastik, Comparison theorems for second order nonselfadjoint differential systems, SIAM J. Math. Anal. 14 (1983), 60-65.

DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11794