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COMPARISON THEOREMS FOR SECOND ORDER

DIFFERENTIAL SYSTEMS

W. J. KIM

Abstract. Comparison theorems arc proved for second order linear differential

systems of the form (/?,>>')' + P,y = 0, where R, and />, are continuous n X n

matrices and R, is invertible, i = 1,2.

Let R and P be « X « matrices with real elements which are continuous and let

R be invertible on an x-interval [a, to). We shall consider the second-order vector

differential equation

(E) (R(x)y')' + P(x)y = 0.

If (E) has a nontrivial solution v satisfying v(b) = v'(c) = 0 [v'(b) = v(c) = 0] for

some b and c, a ^ b < c < co, we define n(b) [<t>(b)] to be the infimum of £,

b < £ < co, such that there exists a nontrivial solution u of (E) satisfying u(b) =

u'(Ç) = 0 [u'(b) = h(£) = 0]. Otherwise, we put v(b) = co [<¡>(b) = co]. If n(b) < co

[<¡>(b) < co], then (E) has a nontrivial solution y such that .y(£) = y'(y(b)) = 0

[^'(è) = y(<p(b)) = 0]. <i>(6) lS called the right-hand focal point of 6. In recent years

some authors have referred to n(b) as a focal point of b; however, this appears to be

inconsistent with the long-term usage of "focal" [13]. In Picone's terminology, v(b)

is a right-hand pseudoconjugate of b and 4>(b) is a right-hand hemiconjugate to b.

We shall henceforth call n(b) the right-hand pseudoconjugate of b.

Morse [11] was the first to obtain generalizations of the classical Sturm separation

and comparison theorems for the second-order vector differential equations

(E,) (Rl(x)y')' + P¡(x)y = 0,        , = 1,2,

where R¡ and P¡ are « X « matrices with continuous and real elements and Ri is

invertible on [a,co), i = 1,2. Other comparison results of a different nature have

been recently proved by Ahmad and Lazer [1-3] for the case R¡ = I, and also by

others [6, 10, 14, 15] under various assumptions on R¡ and P¡. In [15] Tomastik also

considered comparison theorems for the right-hand and left-hand focal points. It is

to be noted that in most of these studies the case Px = P2 is specifically excluded.
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Let T),(/b) [<t>j(b)] be the right-hand pseudoconjugate [the right-hand focal point] of

b for (£,), /' = 1,2. The purpose of this paper is to present theorems comparing

Vi(b) [4>i(b)] and n2(c) [<b2(c)], where b and c are not necessarily equal. For the

special case Rx = R2, PX = P2, these results become "separation theorems," from

which we can further deduce that tj,(x) [<i>,(x)] is a nondecreasing function of x.

The Riccati equation technique [5, 8, 9, 12] adapted to the second-order system

(E) is used to establish the main theorems.

Theorem 1. Let b be a point on the interval [a, co). Every nontrivial vector solution

y of (E) with y(b) = 0 has the property that y'(x) =£0, b < x < a, if and only if the

matrix Riccati system

(MR) 5" =/T1 + SPS,        S(b) = 0,

has a solution on [ft, co).

Proof. Let Y be the solution of the matrix system

(M) (R(x)Y')' + P(x)Y=0,        Y(b) = 0,    Y'(b) = I.

To prove the necessity, let a be an arbitrary nonzero constant vector. Then

y(x) = Y(x)a is a nontrivial solution of (E) with y(b) = 0. Since y'(x) = Y'(x)a

¥= 0, b < x < co, we see that the determinant of Y'(x) does not vanish on [b, co).

Thus, Y' is invertible on [ft,co). Since R is also invertible on [ft,co), so is RY'.

Consequently, S = Y(RY')~l is defined and continuously differentiable on [ft, co)

and S(b) = 0. Differentiating S, we obtain 5" = R'1 + SPS, which proves that S is

a solution of (MR) on [ft, co).

For « X « matrices A = (a,.-) and B = (btj), we write A > B if atj > ft,y, i,

j = 1,..., n, and we define

jf¿C)*-(jfM')4
In order to prove the sufficiency, we require the following lemma.

Lemma 1. The matrix Riccati equation (MR) has a unique solution S on J =

[ft, T)(ft)). The solution S is continuously differentiable and nontrivial; furthermore, it is

nonnegative on J if

(1) A_1(je)>0,        P(x)>0,        b^x<v(b).

Proof. If R'1 = (r, ), P = (/>,7), and S = (sij), the system (MR) is equivalent to

the system of «2 first-order equations

n n

s'j = tij +   E *« E />*/*/,, ty(*) = °'
k=\      1=1

i, j — 1,2,...,«. Evidently, the above system may be cast into a vector equation of

the form

(2) s'=f(x,s),        s(b) = 0,
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where .s and / are «2-dimensional vectors. The vector-valued function / is continu-

ous on 0= ((x, s): iéí, \s\ < oo}; indeed, it is continuously differentiable on D

as a function of s. Therefore, f(x,s) satisfies a Lipschitz condition with respect to i1

on any compact and convex subset of D (see, e.g., [4, p. 142]) and there exists a

unique solution s e C of (2) on some interval [ft, c], b < c < v(b) [7, p. 10]. Hence,

the matrix Riccati system (MR) has a unique solution S, continuously differentiable

on the interval [ft, c]. Let cx = sup{c: (MR) has a unique solution on [ft, c], ft < c <

r/(ft)}, and let S* be the unique solution of (MR) on [ft, cx). Since the derivative of

every nontrivial vector solution y of (E) with y(b) = 0 does not vanish on [ft, n(b)),

it follows from the necessity of Theorem 1 that (MR) has a solution, say S°, on

[ft, rj(ft)); thus, S* = 5° on [b,cx) by the uniqueness of solutions. If c, < r/(ft), we

may assume that S* is defined on [ft, c,] (by setting S*(cx) = limJC_>c-£*(x) =

S°(cx), if necessary). The solution S* may then be continued to a right neighbor-

hood [cx,cx + e], e > 0, of c, [7, p. 15]. This implies that (MR) has a unique

solution on [ft, c, + e], 8 > 0, contrary to the choice of cx. Therefore, cx = r/(ft) and

(MR) has a unique solution S on /.

The solution 5 is continuously differentiable because R~l and P are continuous.

Furthermore, S is nontrivial because R1 & 0—R~l is invertible on [ft, T/(ft)) and it

cannot have zero rows or zero columns at any point of [ft, r/(ft))—and it may be

obtained as the uniform limit of the successive approximations {S¡} defined

recursively by the formula

S0(x) = 0,

Sk + X(x) = f R-'(t) dt + f Sk(t)P(t)Sk(t) dt,
Jh Jb

k = 0,1,..., on some interval [ft, d], ft < d < -q(b) (see, e.g., [7, p. 12]). Due to the

inequalities (1), Sk ^0 on [ft, d], k = 0,1,..., and therefore the uniform limit

S > 0 on [b,d]. Let dx = sup{d: S > 0 on [ft, d], ft < d < v(b)}. Then S ^ 0 on

[ft, dx). We shall prove that dx = n(b). If dx < n(b), then 0 ^ S < oo on [ft, dx] by

the continuity of S. In this case, S may again be represented on some interval

[dx, e], dx < e < v(b), as the uniform limit of the successive approximations

S0(x) = S(d1)>0,

Sk + x(x) = S(dx) + f R\t)dt+ f Sk(t)P(t)Sk(t)dt,

k = 0,1,.... Since Sk > Oonfc^.e], k = 0,1.S > 0 on [dx,e]. We are thus led

to the conclusion that S > 0 on [ft, e], contrary to the choice of dx. Consequently,

dx = 7](ft) and S > 0 on [ft, r,(ft)).

Returning now to the proof of Theorem 1, we shall first prove that \Y'\, the

determinant of Y', does not vanish on [ft, co) if (MR) has a solution S on [ft, co).

Since \Y'\ is continuous and |T'(ft)| = 1 by (M), |T'| does not vanish on some right

neighborhood N of the point ft, that is, Y' is invertible on TV. Since R is invertible,

Y(RY')~l is defined on N and satisfies (MR), as was shown earlier. Due to the

uniqueness of solutions of the initial value problem (MR) proved in Lemma 1, we



290 W. J. KIM

have S = Y(RY')'1 on N. Suppose that \Y'\ vanishes at some point on [ft, co): Let x

be the first point to the right of ft at which \Y'\ vanishes. Then there exists a nonzero

constant vector ß such that Y'(x)ß = 0. On the interval [ft, x) we have S =

Y(RY')~l, which may be written as SRY' = Y; this equality is indeed valid on

[ft, x] because 5, R, Y and Y' are continuous on [ft, x]. In particular,

S(x)R(x)Y'(x)ß = Y(x)ß = 0. But this is absurd since w = Yß is a nontrivial

solution of (E) and it cannot satisfy the condition w(x) = w'(x) = 0. Therefore, |>"|

cannot vanish on [ft, co).

If y is any nontrivial solution of (E) with y(b) = 0, then there exists a nonzereo

constant vector y such that y = Yy. Evidently, y' = Y'y #0 on [ft,co) because

\Y'\ ¥= 0 on [ft, co). This completes the proof.

Another result we need for proving comparision theorems is a version of Lemma

3.2 [12], strengthened for the matrix Riccati systems

(MR,) S' - Rf + SP¡S,       S(b) = 0,       i = 1,2.

Lemma 2. Let Ri and P, be « X « matrices with continuous and real elements and let

Ri be invertible on an interval [a, co), i = 1, 2. Assume that

(3) 0 < f R2l(t)dt < f Rx\t)dt,       0 < P2(x)^ Px(x),    ft < x < co,
Jb h

for some ft, a < ft < co. // there exists a nonnegative differentiable matrix S defined on

[ft, co) satisfying the matrix inequality

(4) S' ^ V + SPXS,        S(b) = Sh>0,

then the matrix differential equation

(5) T' = R2l + TP2T,        T(b)=T,„    Sh>Th>0,

has a continuous solution T < S on [ft, co).

Proof. The existence of T is proved by the iteration procedure

(6) T0(x) = S,        Tk + l(x)=Th+ fX R2l(t)dt+ f Tk(t)P2(t)Tk(t)dt,
Jh Jb

b < x < w, k = 0,1,... (cf. [12]). For k = 0,

0 ^ T,(x)= Th+ i" R21(t)dt+ f S(t)P2(t)S(t)dt
Jh Jb

< Sh + f R-^it) dt + f S(t)Px(t)S(t) dt ̂ S(x)= T0(x),
Jh Jb

due to (3), (4), (5) and the nonnegativity of S; hence, Tx is continuously differentia-

ble and 0 < Tx < T0 on [ft,co). From (6) we see that Tk+1 > 0 if Tk > 0. Also, for

k = 0,1,...,

Tk + X(x) - Tk(x) = f [Tk(t)P2(t)Tk(t) - Tk_x(t)P2(t)Tk_x(t)\ dt,
Jb

where the integrand is nonpositive if 0 < Tk < Tk_v Therefore, 0 < Tk + l < Tk if

0 < Tk < Tk_x. Since 0 < T, < T0, the sequence of continuously differentiable

matrices {Tk} decreases monotonically and is bounded below by zero. Furthermore,
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the sequence is equicontinuous on any compact subinterval K of [ft, co). To show

this, let \\A\\ be the norm of an « X « matrix A = (alf) defined by \\A\\ = £"¡_i|a/ |.

Let M > 0 be a constant such that \\R2l\\, \\P2\\, and ||TA||, k = 0,1,..., are all

bounded by M on K. From (6),

Tk + l(x2) - Tk + x(xx)=fX2 R2\t)dt + f1 Tk(t)P2(t)Tk(t)dt,

x,, x2 e K, k = 0,1,.... Thus,

\\Tk + l(x2) - Tk + X(xx)\\^ f2 \\R^(t)\\\dt\ + f1 \\Tk(t)P2(t)Tk(t) \dt\

< (M + M3)|x2 - x,|,        x1,x2eK,

k = 0,1,..., and this implies that the sequence ( Tk} is equicontinuous on K. Since

it is also uniformly bounded on K, {Tk} converges uniformly on K. The uniform

limit T = lim^.,^ Tk is a continuous solution of (5) and T < T0 = S on K. Since

this conclusion holds for every compact subinterval of [ft, co), it holds for [ft, co).

We are now ready to prove a comparison theorem for n,(x), the right-hand

pseudoconjugate function of (E,), i = 1,2, defined on [a, co).

Theorem 2. Let ft be a point on the interval [a, co). //

(7) Rîl(x)>0,        f* Rxl(t)dt> f R-2\t)dt>0,        Px(x) > P2(x) > 0,
Jh Jb

ft < x < co, then t)x(b) < t]2(b). If the stronger condition

(8) R?(x) > R'2l(x) > 0,        Pj(x) > P2(x) > 0,

a < x < co, fto/cii, ifte« nx(b) < tj2(c)' a < ft < c < co.

Proof. Every nontrivial solution j> of (E,) with ^(ft) = 0 has the property that

y' + 0 on [ft, ijiift)). Hence, the corresponding matrix Riccati equation (MRJ has a

solution S on [ft, r/,(ft)) by Theorem 1. The solution S is nontrivial and nonnegative

on [ft, T/,(ft)) by Lemma 1. According to (7) and Lemma 2, the matrix Riccati system

(MR2) associated with (E2) has a continuous solution Ton [ft, nx(b)). Therefore, by

Theorem 1, every nontrivial solution vector w of (E2) with vv(ft) = 0 has the

property that w' ¥= 0 on [ft, r/,(ft)); consequently, vx(b) < rj2(ft).

If (8) holds and c is an arbitrary point of [a, co), then

f R~x\t)dt> f R2l(t)dt> 0, a < c < x < co.

For a ^ b ^ c < vx(b), (MRJ has a nontrivial solution S which is continuous and

nonnegative on [ft,Tj,(ft)) by Theorem 1 and Lemma 1. Applying Lemma 2 to the

interval [c, rj,(ft)), we conclude that the system 7" = R2l + TP2T, T(c) = 0, has a

matrix solution Ton [c,r/,(ft)). Again by Theorem 1, if o is any nontrivial solution

of (E2) with v(c) = 0, then v' does not vanish on [c, ij,(ft)). Therefore, Tji(ft) < r\2(c),

a < ft < c < 7j,(ft).

If, on the other hand,  7)j(ft) < c < co, it is obvious that nx(b) < n2(c). This

completes the proof.
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When we put Rx = R2 = R and P, = P2 = P in Theorem 2—many comparison

theorems for the second-order systems (E,), /' = 1,2, fail to hold for this case—we

obtain the following "separation theorem": If R is invertible, R'1 > 0, and P > 0

on [a, co), then the equation (E) has no nontrivial solution y such that y(xx) =

y'(x2) = 0, ft < x, < x2 < r/(ft), for any ft, a < ft < co. This result is equivalent to

the statement that v(x) is a nondecreasing function of x on [a, co).

Let <i>,(x) be the right-hand focal point of x for the equation (E,), i = 1,2. There

are analogous comparison results for <p¡(x), i = 1,2, which we summarize below.

Let U be the solution of the matrix system

(R(x)U')' + P(x)U = 0,        U(b) = I,    U'(b) = 0,

for some ft, a < ft < co. Put K = -RLJ'U1. If every nontrivial solution v- of (E) with

y'(b) = 0 does not vanish on [ft, co), then U is invertible on [ft, co). Thus, V is

defined on [ft, co) and satisfies thereon

(MR') V = P + KR-XF,        K(ft) = 0.

This proves the necessity part of the following theorem.

Theorem 3. Suppose that R and P are « X « matrices with continuous and real

elements and that R is invertible on an interval [a, co). Let ft be a point on [a, co).

Every nontrivial solution vector y of (E) withy'(b) = 0 does not vanish on [ft, co) if and

only if the matrix Riccati system (MR') has a solution on [ft, co).

Sufficiency of this theorem may be proved in a manner similar to the correspond-

ing proof of Theorem 1, using the following analogue of Lemma 1.

Lemma 3. The matrix Riccati equation (MR') has a unique solution on [ft, </>(ft)),

which is continuously differentiable. The solution is nontrivial if P ^ 0 and it is

nonnegative on [b,<p(b)) ifR~l(x) > 0, P(x) > 0, ft < x < <j>(b).

Using Theorem 3, Lemma 2 (with P, and P"1 interchanged in (3), (4) and (5),

i — 1,2) and Lemma 3, we can similarly prove the following comparison theorem for

<¡>¡(x).

Theorem 4. //, for some ft, a < ft < co,

P,(x) > 0,        f Px(t) dt > f P2(t)dt > 0,        Rl\x) > R^ix) > 0,

ft < x < co, then <j>2(b) ̂ <i>i(ft)- Moreover, if

Pt(x) > P2(x) > 0,       R^(x) > Rl\x) > 0,

a < x < to, ?ftc?« <i>2(c) > 4>i(b), a < ft < c < co.

Putting Px = P2 = P and P, = P2 = P in Theorem 4, we again obtain a "separa-

tion theorem", which is equivalent to the statement that </>(x) is a nondecreasing

function of x.
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