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A NOTE ON THE STRONG SUMMABILITY

OF THE RIESZ MEANS OF MULTIPLE FOURIER SERIES

SHIGEHIKO KURATSUBO

Abstract. Let S°(x,f) be the Riesz means of order a of an integrable function

f(x) on ^-dimensional torus TN (N > 2), that is,

*<*./)-    E    (l-^Xf(m)e2—.
I"'I2<<V '

E. M. Stein has shown that if 1 < p < 2 and a > ap where

N - 1 / 2        \       1       N - 1       V2(H-7
" 2     \P       J     P' 2 p"

then for any function f(x) s LP(TN) S"(x,f) is strong summable to/(a), that is,

lim   UT\S?(x,f)-f(x)\2dt-0
r^oc   I jq

for almost every x. In this paper we shall show that if 1 «s p < 2 and -1 < a < o^,

then there exists a function f(x) £ LP(TN) such that

y/V"^./)!2^ = i2(7'a'~ak>g"2T:r)    as T ^ oo

for every x and every t > l/p, in particular,

1   /-T"._.       ,M2
lim   ?/r|S,-(x./)|

r—* oo

dt = oo

for every jc, where we can take for/(a-), f„T{x) such that /OT(m) = l/|m|"logT|m|,

1. Introduction. Let RN denote the /V-dimensional Euclidean space, TN the

N-dimensional torus (identified with the cube QN = {x = (xx,..., xN) S R": - \

< x,! < \, j' — 1, • • •, N}) and ZN the integral lattice of P w. Throughout this paper

assume A7" > 2 and 1 < /? < 2.

For any/(x) € Ll(TN), define the Riesz means of order a of f(x) by

*/•(*,/)=  E (l-1^)"/^)«2""*
\"'f<A '

with /(w) = fT*f(x)e-2"imxdx, m e Z*.
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The problem of the strong summability of the Riesz means of multiple Fourier

series is one of dealing with the validity of the following:

lim   ^ fT\S,a(x,f)-f(x)\2dt = 0.
7"-» oo    I  J0

E. M. Stein [6] has shown that if /€ L"(TN) and a > ap where

N -1(2      A      1       N - 1       N

then hmr_00(l/r)/0T|S'ia(x,/) - f(x)\2dt = 0 for almost every x. On the other

hand, it seems to us as if the case a < ap is unknown except the case p = 1 and

a = ctp. (In [6] Stein has stated the affirmative result without the proof.)

The purpose of this paper is to prove a negative result for the case a < a . The

method consists of joining multiple Fourier series and the Lattice Point Problem in

analytic number theory by means of a special function fOT(x) whose Fourier

coefficient is given by faT(m) = l/\m\"logT\m\. Our main result is the following

theorem.

Theorem. Suppose 1 < p < 2 and -1 < a < ap. Then there exists a function

f(x) e Lp(TN) suchthat

4 fT \S^(x,f)\2dt = fi(Ta"~alog~2TT)    as T ̂  oo
I JQ

for every x and every r > 1/p, in particular,

ïîrrT   i [T \S,a(x,f)\2dt= oo
r-oc   l Jo

for every x, where we can take faT(x) for such a function f(x).

In the above statement, g(T) = Q(h(T)) implies g(T) # o(h(T)).

From this theorem we have directly the following corollary.

Corollary. Suppose 1 < p < 2 and 0 < a < ap. Then there exists a function

/(x)e LP(TN) suchthat

5,a(x,/) = ß(,(1/2)(a/'-a)log-Ti)    ast -» oo

for every x and every r > 1/p, in particular,

ïïm \S?(x,f)\ = oo
7-^00

for every x, where we can take far(x) for such a function f(x).

Remark. The existence of f(x) e LP(TN) such that km,.. JSr"(x,/)| = oo for

almost every jc and the fact we can take fa = fa0 for such a function / have been

shown for a = 0 by Stein and Weiss [7] and for 0 ^ a < (N - l)/2 by Babenko [3]

(see also Alimov, Il'in and Nikishin [2]). Using our method, it is easy to show that

their exceptional sets are empty (see also Kuratsubo [4]).
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2. Lemmas. The proof of the theorem depends on several results from [1, 5]. These

are stated here for convenience of the description. The next lemma was proved in [1,

Lemma 2.2] for the case s > 0 and r = 0.

Lemma 1. Suppose s > -1 and s = r + k where r is an integer and k satisfies

0 < k < 1. For ß > 0 and a nonnegative number t, define a function b(X) as

A^logTA, 0 according to A > e, X < e respectively. Further, for any numerical series

Lf=xak, let a{, a{ be E*<x(l - k/X)sak, ¿Zk<x(l - k/X)sb(k)ak respectively. Then

we have

ft(X)^+(-l)r+7o1^^ia,r1(|)"2[(ft(M)-ft(A))(l-Ol dt

and, for some positive constant C,

L
i    t'

o    (r+1)!

d_Y
dt

[(b(tx)-b(x))(\-ty\ dt < Cft(A),        A > 0.

Proof. The first equality is proved in [1, Lemma 2.2]. On the other hand, the

second inequality follows from the next.

dt
"[(ft(íA)-ft(A))(l-í)í]

r+2

« cb(x){(i - *')(! - o'~'~2 + E tß-'(i - t)-r+J-2\

and

P tr+1(l - /')(1 - 0'"""2dt < +00,
•'o

f1 t'+i+ß-j(l - ty-r+j-2 dt < +00       (1 <;<r + 2).
'o

Lemma 2. Under the same notation as Lemma 1, there exists a positive constant C

such that

T.
; f I o{ I ciA< cft(r)2 sup   -/"Vxl2^.     r
^o o<r<r\ ' •'o /

Proof. From Lemma 1, it follows that

>0.

[T\ai\2dX<2\[Tb(\)2\a{ dX

r+1rT  n      y ' ■

+ J0   i   (r+l)ia;

= 2{/1 + /2}.

r+l{±

X     \dt
'[(b(tx)-b(x))(i-ty\dt dX
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First, by monotone increasing of ft(A) we have Ix < b(T)2fJ\ox\2dX. Next, by

Schwarz's inequality, Fubini's theorem, Lemma 1 and its proof we have

•'n        •'n

/•l        tr+l

{r+l)\
l)r+2[(b(tx)-b(x))(i-ty]
dt

dt

x i   (r+l)Oa'x

<c/r6(A)2/lH(l-i')(l^r

(!p[(ft(fA)-ft(A))(l-Ol

v-r-2

dr   i/A

-+2

+ E ^-'(l-rr'+y-Hla/x+1|
7=1

-r-2

Ji\ dX

< cTb(T)2f r+1 (i -/")(i -0s"
•"n

1     /-TV
+ E^(i-Oî"^2|^/o!<1! </x

CTb(T)2 sup   f- P |oj¡;+1|2<íX
o<,^r\ ' •'o

dt

for a suitable constant C, not necessarily the same at each occurrence. On the other

hand, when r < s < r + 1, let 8 be a positive number such that r + 1 = s + 8.

Then we have the following well-known relation

o^ = B(8,s + iylf(i-t)s-1t^x dt

with the beta function B (e.g. [7, p. 269]). By the same calculation with ^-estima-

tion, we have

\f \or\2dX < b(8,s + i)"1 f1 (i - «)8"V(/' \o;JdX

I 1   f       i2
<    sup     - /    \a{\ dX

0<u^,\Uj0

du

These complete the proof of Lemma 2.

The next lemma is a metrical theorem of the Lattice Point Problem [5, Theorem 1]

in the case a > 0, but an examination of the proof shows that it applies without

significant change to the present situation.

Lemma 3. Suppose a > -1. Then we have

t{ I 1-
M2</

m a _ Q(r<w-H/a—)

for every x.
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Applying Lemma 2 to the case

,2-nimx

°k      ¿=k \™\°\o^\m\

and s = a, we have the following lemma.

ß =

Lemma 4. Suppose a > -1, a ^ 0, a + a < (N — l)/2 and r is a nonnegative

number. Then we have

tL z   I1
l<|m|2</

m

M°logTM
dt = ß(r(A,-1)/2-a-°iog-2T)

for every x.

3. Proof of theorem. Now let a be equal to N/p', r larger than 1/p and faT the

function such that

LA™) -
1

|w|°logT|»i| '
\m\ > 1.

Then, from Wainger's theorem [8, Theorem 7] the function faT belongs to LP(TN)

and from Lemma 4 we have

i/;is,-(,,/„)i2«,=i/o
\m

2 \ a

l<|m|2<r v

= ß(r(/v-1)/2-a"'v/^iog-2TT)

«î|"l0gT|«7|
dt

for every x. This completes the proof of theorem.
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