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A FINITELY ADDITIVE GENERALIZATION OF

BIRKHOFF'S ERGODIC THEOREM1

S. RAMAKRISHNAN

Abstract. A finitely additive generalization of Birkhoff s ergodic theorem is ob-

tained which yields, in particular, strong laws of large numbers in the i.i.d. setting as

well as for positive recurrent Markov chains.

Suppose X is a nonempty set and sé a a-field of subsets of X. Let T be a

measurable transformation of X and let P be a finitely additive probability defined

on (X, sé) which is invariant under T, i.e., P(T~l(A)) = P(A) for all A <^sé. Let

{/„} and ( g„} be sequences of real valued measurable functions defined on (X, sé).

Definition. Say that {/„} is unlikely to be strongly dominated by {gn} if for

every e > 0, Lim^^^, P{x: g„(x) < f„(x) + e for some « < N) = 1. We shall

denote this by {/„} -A {g„}.

The following lemma is inspired by ideas in [6, 7, 8 and 16].

Lemma 1. Let f and g be measurable functions which are integrable with respect to P

(meaning, functions for which the integral is well defined, not necessarily finite). If

{(l/«)E,"r07°^} * {d/^E^goT'}, then fAgdP^fAfdP for all A e/,
where J is the a-field of all invariant sets A in sé, i.e., sets A satisfying A = T~l(A).

(See [5 or 9] for the definition of the finitely additive integral.)

Proof. Fix e > 0 and a positive integer M. By the hypothesis there exists a

positive integer N such that

I -.   n-l -,   n-1 \

P(x: - E g(T'x) < - E f(T'x) + £ for some « < N } > 1 - -rz.
\      n i-o » /~o / M

Call the set on the left side D. Define

max(/, — M) on D
g=mm(g,M)    and    / =

max(/, M) on D

Clearly now, for every x fe X, (l/«)E;_o g(T'x) < (l/n)I."A} f(T¡x) + e for some

n < N. (For x e Dc, « can be chosen to be 1.) For x e X, let n(x) denote the least

such positive integer «. Define nx(x) = n(x) and «^ + 1(x) = nk(x) + n(T"kt-x)(x)),

k > 1 and x S X. Choose a positive integer L such that (N — \)M/L < e. For
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x e X, let k(x) be the largest positive integer such that nk{x)(x) < L. By our

choice, we have, for 1 ^ j < k(x),

«,(*)-1 ",(.v)-l

«,(*) - »y-i(*) , = „,..,(.) nj(x) - nj_i(x) ,^_l(jc,

where n0(x) = 0. Also,

/. -1 /. -1

E      f(r'x)<       E      /(T'x) + 2A/(L-«,(v)(x)),

since, by definitions, g < M and / > — A/. From all these inequalities, we get

L-l £-1

E fir'x) <   E f(T'x) +Le + 2M(N - 1),
r-0 r-0

since, by definition of «^(ï)(x), L — nk{x)(x) is at most (N — 1).

Therefore, by choice of L,

L-l -,    L-l

\ Ef(7"x)<| E/(^x). + 3£.

Now integrating both sides w.r.t. P and using the invariance of P under T, we get

fA gdP < /^ /¿P + 3e, for every A € J. Therefore, fA min(g, M) dP ^

jAmax(f, -M)dP + 2MP(DC) + 3e (using the fact that on Dc, /< max(/, -AT")

+ 2M), and hence /^ min(g, M)dP < /^ max(/, - M)dP + 5e. Since e and M are

arbitrary, the result follows by taking limits as e —> 0 and M -» oo and using the

definition of the finitely additive integral.    D

Definition. Say that a sequence {/„} of measurable functions is P-regular if, for

every positive integer M, {/„} -A {min(/*, M)} and (max(/„ -M)} -A {/„} where

{min(/*, M))    and    {max(/„, -M)}   are   constant   sequences   with   /*  =

lim sup,, _ x /„ and /* = lim inf„ _ x /„.

Definition. Say that a nonnegative measurable function / is (P, T)-regular if the

sequence {/„} defined by /„ = (l/n)T."Zo f °T' is P-regular.

Say that an integrable function / is (P, T)-regular if /4 = max(/, 0) and /" =

— min(/, 0) are (P, T)-regular.

Theorem. Let T be a measurable transformation on the measurable space (X, sé)

and P be a finitely additive probability on (X, sé) invariant under T.

(A) For every integrable (P,T)-regular function f on (X,sé), jAf*dP = JAf#dP

= fA fdP for every A G J, where

-,   n — 1 i   n — 1

/* = limsup- E f°T',        /* = liminf- E/"7"
n-oc     n   , = 0 ""^    "   Í-0

and J is the sub o-field of T-invariant sets.

(B) Suppose further that P(U™=xAn) = 0 for every sequence {An}n>1 of sets in J

such thatP(An) = 0 for all « > 1. Then P{f* #/*} = 0.



BIRKHOFF'S ergodic theorem 301

Proof. First, it is enough to prove Theorem A for nonnegative (P, T)-regular

functions, because then

fAir)*dP-fA(r)*dP=fArdP

and

f (f-)*dP = f (f~)*dP= ( f~dP    for all A e/,
JA JA JA

where /+= max(/, 0) and /"= -min(/, 0). This, together with the integrability of

/, implies that either (/+)* or (f~)* is finite except on a P-null set. Hence,

[(/+)* - (/")*] and [(/+)„ - (/")*] are well defined except on a P-null set. We

thus have, for A ^ J,

f f*dp=\ (r-n*dp
J A JA

<( [(/T -(/")*]dp
JA

= ( (f+-r)dp = f {(r)*-(f-y]dp
J A J A

</   (f+-f)*dP=   f  f*dP.
JA JA

Since f * < / *, all inequalities above are actually equalities.

To prove Theorem A for a nonnegative (P, T)-regular function /, note that, by

definitions and by the lemma, ¡Amm(f*, M)dP < fAfdP ^ fAf+dP for every

A g J and hence ¡Af*dP < ¡A fdP < fAf*dP for every A^J. Since /*</*, all
inequalities above are actually equalities and part (A) is proved. This implies that

P{f* ~ f* > 1/«} = 0 f°r every «. Since all sets involved are in J, part (B)

follows by hypothesis.    □

Corollary (Birkhoff's Ergodic Theorem). Let (X,sé,P) be a countably

additive probability space and T a measurable transformation. Suppose P is invariant

under T. Then for every 1} function f, (1/«)E,"=T01 f °T' converges almost surely to the

conditional expectation of f given J.

Proof. First, countable additivity of P implies that every integrable function / is

(P, T)-regular. The proof is now immediate from the previous theorem.   D

Remark 1. In the general (finitely additive) case we cannot hope to improve the

Theorem to include every L1 function / as shown by the following example.

Example 1. Let X be the set of positive integers, sé be the power set of N, T;

n -* n + 1, and P a finitely additive probability on X invariant under T. Such a P

is known to exist (for example, is induced by a Banach limit). Let {an}n>x be a

sequence of zeros and ones such that (l/«)E¡J_i ak does not converge.

Let f(n) = an,n> 1. Then (l/n)L?A} f(Tlx) = (1/«)E,V=+V"_1 a„ which does not

converge for any x.
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Remark 2. In the general (finitely additive) case, if fAf*dP= fAf*dP for all

A e J, it does not necessarily follow that /* =/* almost surely although it is

equivalent to P{/*—/*> e} = 0 for every e > 0.

Let X = IN where / is a nonempty set and jV the set of positive integers. Let sé

be the a-field generated by the open subsets of X when X is equipped with the

product of discrete topologies. Given, for each i e /, a finitely additive probability

Y, defined on all subsets of / and a finitely additive probability p (also defined on all

subsets of /), there exists a finitely additive probability PM defined on sé (following

Dubins and Savage [3], Dubins [4] and Purves and Sudderth [10]) which provides a

reasonable framework to study a finitely additive Markov chain with stationary

transition probabilities y„ ' G L and initial distribution p. (See [12, 13, 14 and 15].)

We shall henceforth refer to P^ defined above as the Markov measure on X with

stationary transitions y,, i G /. When y, = p for all i G /, we shall call PM the i.i.d.

product measure with marginal p. T henceforth will stand for the shift transforma-

tion on X= IN.

Lemma 2. //Pu is the i.i.d. product measure on (X, sé) with marginal p, then every

L1 functionf, defined on X, which depends only on the first coordinate, is (P^, T)-regu-

lar.

Proof. Let /„ be the function on X defined on X by fn(ix,i2,...,in,...) =

f(in, in + x,... ) for all « ^ 1 and (/',, i2,..., in,... ) in X. Given e > 0 and o > 0, we

can use the standard technique of approximating by simple functions to obtain a

sequence {g„} of finite-valued functions such that gn depends only on the «th

coordinate, and P^d/, - g„\ < e/2 for all «} > 1 - 8/2. This technique can and

has been used in the finitely additive setting in [1, 10 and 14] in case of independent

product probability. Let sén be the (finite) a-field on / induced by gn, « ^ 1. It is

known by Theorem 2.1 in [1] that the i.i.d. measure P when restricted to \~[™=xsén,

the product a-field, is countably additive.

Thus the sequence (g„) is (PM, T)-regular and by choice of our approximation it

is easy to see that, for every positive integer M, P{(l/n)T,"k = xfk > min(/*, M) - e

for some n ^ N) ^ 1 — 8 for sufficiently large N, and P{(l/n)Y.k = xfk <

max(/t, — M) + e for some «<N}>1 — ôfor sufficiently large jV, where

1    " 1    "
/* = limsup - E Sk    and    /* = liminf - E fk-

n-oo    " fe-1 "^°°    " k = \

This proves that / is (P   T)-regular.

The i.i.d. strong law of large numbers. (See [2 and 9].) Let (X, sé) be as defined

above and P be the i.i.d. product measure on (X, sé) with marginal a, where a is a

finitely additive probability defined on all subsets of /. Let / be an ¿'-function on

X depending only on the first coordinate. Then

p}{h,i2,...,in,...y.\ if(ik,ik+i,-..)^jfdp\ = i.
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Proof. It follows from a result of Purves and Sudderth that P^ is countably

additive and 0-1 valued on the shift invariant a-field in the i.i.d. case. (See Theorems

1 and 2 in §3 in [11] or see [9].) This together with Lemma 2 immediately gives the

above Theorem as a corollary of Theorem B.    D

Suppose Pu is the Markov measure on X with stationary transitions y,, ; G /, and

initial distribution p. If p = Ö,, the point mass at i, we shall denote P^ by P,. For

j g I, let („ be the function on X defined by r,-tl(x) = « if /„ = j and /„, ¥= j for

1 < m < «, =oo otherwise, where x = (/',, i2,. ..,/„,...). An element ¡67 is

called positive recurrent if w„ = / tiX dPi < oo.

The set / is called a positive recurrent Markov chain under Pß if (a) every t'g I is

positive recurrent, and (b) P¡(tjX < oo) > 0 for all i, j g I. For j G I and a

function / on I, define

*(/)-/ E/(i*)l{«,a> *} ¿Py(x),

* = (i^, i2,..., ik,... ), provided the integral exists. The integrand is the sum of /

values up to the first occurrence of j. The function f on I can be used to define a

function on X which depends only on the first coordinate. This function on X will

also be denoted by /.

It has been proved in [12, §10, Theorem 1] that if / is a positive recurrent class

under P there is a finitely additive probability X, defined by X(E) = pt(lE)/mu,

E çz I, i g I, which is a canonical stationary initial distribution for the Markov

chain (therefore, Px is invariant under the shift transformation T).

Lemma 3. Let I be a positive recurrent Markov chain. Let f be a function on I such

that jU,(|/|) < oo for some i G I. Then f, regarded as a function on X, is (Px, T)-regu-

lar, where X is the canonical stationary initial distribution.

Proof. For /' g I, let tn ¡ (defined on X) be the time of «th occurrence of j, for

« > 1. For the i in the statement of the lemma, let F be the set of all nonempty

sequences of elements of I whose last coordinate is i and none of the other

coordinates is i. An element of F will be called an /-block. Let G¡ be the elements of

X for which infinitely many coordinates are i. It is known (Theorem 9, §4 of [12])

that Pj(G¡) = 1 for all j G /. Let {ß„} be the sequence of functions defined on G¡

into F byjß,(x) = (wx,...,w!¡(x)) and ß„+x(x) = (w, (A)+1,..., w, lji+l(x)), n > 1,

where x = (wx,...,wn,...).

The Blocks Theorem (Theorem 2, §5 of [12]) proves that, under the map <ff:

x -* (ßx(x),.. .,ßn(x),...), the probability P, is carried over to FN as an i.i.d.

product measure, i.e., P, ° ty~l is an i.i.d. measure. Let g be the function on F which

is the sum of / values in an /-block. If g is regarded as a function on FN depending

only on the first coordinate, then the hypothesis jtt,(|/|) < oo implies that g is an

L'-function on FN. Let A be the block-length function defined on F. Once again the

standard technique of approximating by finite valued functions together with

Theorem 2.1 of [1] implies that the sequence {E£ = i g(a,)/E"=1 A(a,)},

(ax,...,an,...)in FN, is P¿° ^"'-regular. So by the Blocks Theorem the sequence

{^■'k-\x) f(wk)/ti n(x)}, x = (wx,...,w„,...) in Jf, is (P,, T)-regular. This suffices to
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prove the P,-regularity of / (this can be seen, for example, by Lemmas 6 and 8 of

[14]).
Let Xn be defined on subsets of I by

K(E)-~-Jh(x„)l{tu>n]dP!(x),

where x = (xx,..., xn, ...),«> 1.

Then X(E) = Y.™=xXn(E). By the Strong Markov property (Theorem 4, §3 of

[12]),

Px(t,x>K+l)=(        PJ(t,x>K)dX(j)

</ PJ(tlX>K)dX(j)

oc

=  E   Í P,(t, i > K)dX„(j)     by Lemma 1, §8 of [12]
,, = iJ

i 00

= — E Pi(li,i > n + K)    by the Strong Markov property.
m<> n = i

Since the positive recurrence of /' implies that w„ = E^=1P,(i,, > «) is finite, it

follows from the above inequalities that P\(tlX > K + 1) -* 0 as K -* oo. Using the

Strong Markov property again, and the (P,, T)-regularity of /, the result follows.

Strong law of large numbers for a positive recurrent Markov chain. Let I be a

positive recurrent Markov chain. Let / be a function on I such that p,(\f\) < oo for

some /'. If X is the canonical stationary initial distribution, then

pÁx-(wx,...,w„,...)\\ E/K)->//¿aJ = 1.

Proof. First, by Theorem 1, §11 of [12], Px is 0-1 valued on the shift invariant

a-field J. Also, by the Strong Markov property PX(A) = PK(tiX < ao)P¡(A) = P^A)

for all ie/, the shift invariant a-field. By the remark in the last paragraph of [15],

P, is countably additive on J and hence PÁ is countably additive on J. Now an

application of Lemma 3 and Theorem B completes the proof.

References

1. R. Chen, A finitely additive version of Kolmogorov's law of iterated logarithm, Israel J. Math. 23

(1976), 209-220.
2. _, Some finitely additive versions of the strong law of large numbers, Israel I. Math. 24 (1976),

244-259.

3. L. E. Dubins and L. J. Savage, How to gamble if you must: Inequalities for stochastic processes,

McGraw-Hill, New York, 1965.

4. L. E. Dubins, On Lebesgue-like extensions of finitely additive measures, Ann. Probab. 2 (1974),

456-463.

5. N. Dunford and I. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.

6. T. Kamae, A simple proof of the ergodic theorem using nonstandard analysis, Israel J. Math. 42

(1982), 284-290.
7. Y. Katznelson and B. Weiss, A simple proof of some ergodic theorems, Israel J. Math. 42 (1982),

291-296.



BIRKHOFF'S ERGODIC THEOREM 305

8. D. Ornstein and B. Weiss, The Shannon-McMillan-Breiman theorem for a class of amenable groups,

Israel J. Math. 44 (1983), 53-60.

9. R. A. Purves and W. D. Sudderth, Some finitely additive probability. Univ. of Minnesota School of

Statistics Tech. Report No. 220, 1973.

10._, Some finitely additive probability, Ann. Probab. 4 (1976), 259-276.

11. _, Finitely additive zero-one laws, Sankhya45A (1983), 32-37.

12. S. Ramakrishnan, Finitely additive Markov chains, Trans. Amer. Math. Soc. 265 (1981), 247-272.

13._Potential theory for finitely additive Markov chains, Stochastic Process. Appl. 16 (1984),

287-303.

14. _, Central limits theorems in a finitely additive setting, Illinois J. Math. 28(1984), 139-161.

15.  _,  The tail a-field of a finitely additive Markov chain starting from a recurrent state, Proc.

Amer. Math. Soc. 89 (1983), 493-497.

16. P. C. Shields, A simple direct proof of Birkhoff s ergodic theorem, 1982 (unpublished).

Department of Mathematics, University of Miami, P. O. Box 249085, Coral Gables, Florida

33124


