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A STRUCTURE THEOREM FOR THE COMMUTANT

OF A CLASS OF CYCLIC SUBNORMAL OPERATORS

MARC RAPHAEL

Abstract. An m- measure is defined to be a measure p such that the analytic

bounded point evaluations of P2(p) is the open unit disk D in the complex plane,

and the weak* closure of the analytic polynomials in Z,x((i) is the set of bounded

analytic functions on D. A complete characterization of P2(fi) n Lx(p), the corn-

mutant of the cyclic subnormal operator of multiplication by z on P2(p), is then

obtained.

In this paper a complete characterization is given of the commutant of a class of

cyclic subnormal operators closely related to the unilateral shift.

An operator Sona Hubert space 2? is subnormal if there is a Hubert space Jf

containing Jf and a normal operator N on Jf such that N(J{?) ç 3aA and S = N\Jif

(the restriction of N to Jf ). The weak* topology on B(Jf?) is the topology which

B(Jif) has as the Banach space dual of the trace class operators [4].

A measure u is always a compactly supported, positive regular Borel measure on

the complex plane, C. If S is a cyclic subnormal operator, then there exists a

measure p such that S is unitarily equivalent to S , the operator of multiplication by

z on P2(p) = the closure of the analytic polynomials in L2(p) [4], Yoshino's

Theorem [4] states that the map from P2(u) n L°°(fi) onto {Sß}' = the commutant

of S„, given by <p -> <p(S ) = multiplication by tf>, is an isometric isomorphism and a

weak* homeomorphism. For functions /, g in L2(p), (/, g) = ffgdp,, \\f\\2 —

((/,/))1/2, and H/Hp denotes the ^-essential supremum of /. Let m denote

normalized arc length measure on 3D, the boundary of the open unit disk. Thus S„

is the unilateral shift. A class of measures with many of the properties of m will be

defined after some notation is set.

If ft is a measure, then B(p), the set of bounded point evaluations of P2(fi),

consists of those X in C for which the linear functional p <-* p(X) has a bounded

extension from the polynomials to P2(ft). Equivalently, X e B(p) if and only if

there exists kx in P2(fi) such that p(X) = (p, kx) for all polynomials p. Ba(p), the

set of analytic bounded point evaluations of P2(fi), is the largest open subset of B(p)

such that the function

(1) /(*)-</,*x>

is analytic in Ba(a) for every/ in P2(p).
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In view of (1), every / in P2(ft) can be given a pointwise definition on Ba(p);

namely, f(X) =/(X) for X in Bu(p). Since the pointwise definition of / agrees

ft-a.e. with any Borel function that represents the equivalence class of / in P2(fi), it

will be agreed upon once and for all that each / in P2(p) is defined pointwise on

Ba(p) via (1). The  ~  notation will be dropped in all instances.

The proof of the following proposition is left to the reader.

Proposition 2. Let a be a measure and X g Ba(u). Iff g P2(ft) and g G P2(fi)

n L-(m), thenfg g P2(p) and (fg)(X) = /(X)g(X).

An m-measure is defined as a measure ¡u with the following two properties:

(a) Ba(p) = D;

(b) Px(p), the weak* closure of the analytic polynomials in L°°(p), has no

L^-summand, and the interior of the Sarason hull of ft is D.

The terminology of condition (b) is taken from [4]. Condition (b) is equivalent to

the identity mapping on the polynomials extending to an isometric isomorphism that

is a weak* homeomorphism from P°°(fi) onto Px(m). In particular p is supported

on D and f¿¡9D < < m.

Condition (b) will be abbreviated simply to "P°°(ft) = H°°". It is not a substan-

tial restriction on ft as is indicated by Theorem 4.11 of [5]. On the other hand, if

P2(ft) =£ L2(fi), then it is unknown whether B(p) is nonempty.

Example 3. Some examples of m-measures are now given.

(i) Of course m is an m-measure.

(ii) Area measure on D is an m-measure.

(iii) If ft is a measure supported on D~ such that ft|3D < < m and d(p\dli)/dm is

log-integrable with respect to m, then p is an m-measure. This follows by combining

Theorem 4.5 of [2] with Corollary 5 of [8].

(iv) Let {an) be a sequence in D with 3D c {a„}~. If almost every point of 3D

can be approached nontangentially by a subsequence of {an), then ft = ~Z2~"8a is

an m-measure [1]. Here, 8a  is the unit point mass measure at an.

(v) If v is a probability measure on [0, 1] with 1 in the support of v, then

dp(re'e) = dv(r)dm(e'e) is an m-measure and S is the canonical model for a

subnormal weighted shift operator of norm 1 [4].

(vi) Let G = D\(zgC: \z — 1/2| < 1/2}. Using a technique from [6], one can

construct a measure ft, equivalent to area measure on G, such that P°°(fi) = Hx and

Ba(p) = G. Thus ft is not an m-measure since Ba(u) =£ D.

The main result of this paper is the following.

Theorem 4. // ft is an m-measure, then there is a unique p-measurable subset A of

3D such that:

(a) P2(ft) n L°°(ft) = P°°(ft|C\A) © L=°(ft|A);

(b) ft|C \ A is an m-measure;

(c)P2(ft|C\A)nLco(ft|C\A) = Pcc(ft|C\A) = Hx.

Theorem 4 will be established with the aid of several lemmas.
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Lemma 5. // ft is an m-measure andf g P2(ft) n Lx(p), then there is a g in P°°(fi)

such that (f - g)|D = 0.

Proof. It can be assumed that ||/||   < 1. For X in D,

l/(^)r-|</,*X>r-K/".*X>l<H/"ll2||*xll2<ll*xll2-
Letting « -» oo shows that |/(X)| < 1. Since Ba(p) = D, / is analytic and bounded

on D. Since P°°(ft) = Hx, there exists g in Px(p) such that (/ - g)|D = 0.    D

Lemma 6. // ft is a measure such that S^ is quasisimilar to Sm, then P2(p) n L°°(ft)

= P°°(ft) = Hx.

Proof. According to Theorem 4.5 of [2], a necessary and sufficient condition for

S and Sm to be quasisimilar is that ft be a measure as in Example 3(iii). Therefore

P°°(ft) = Hx and if / G P2(ft) n Lx(p), then there exists, by the previous lemma, a

g in P°°(ft) such that (/- g)|D = 0. Let « =/- g and choose a sequence of

polynomials (/>„} that converges to « in L2(p). Choose <j> in H2 (the Hardy space

of square integrable functions) such that \(j>\2 = du0\dm where fi0 = /t13D. Then

0=  lim   /     \pn — h\ dp =  lim    / \ pn<p — ht¡>\~dm.
n—»oc   ■'BD /i—»oc   ^

It follows that h<p e H2; so if Px is the Poisson kernel at X, then

(«<f>)(X) =  lim   [ Px(p„<t>)dm=  lim   (Pf/P)(\) = 0.
n —» oc   J n —» oc

Thus «<f> = 0 as an element of H2. Since log|<i>| g Ll(m), it must be that « = 0

m-a.e.; hence P2(ft) n L°°(ft) = P°°(ft).    D

Lemma 7. Le? ft be an m-measure and g g P2(ft) n Lx(p). If g|D = 0 a«J

£ = {z G 3D: g(z) * 0}, i/ie« x£ S P2(ft) n L°°(ft).

Proof. If S^ is quasisimilar to Sm, then Lemma 6 implies that P2(ft) n Lx(p) =

H°°. In this case, x£ = 0, so there is nothing to prove.

Now suppose 5M is not quasisimilar to Sm. Then log(du0/dm) G L1(m) where

fi0 = ft|3D (Theorem 4.5, [2]). Hence Szegö's Theorem implies that P2(p0) = L2(p0).

For k > 0 let Ek = {z G 3D: |g(z)| > k'1}, and let {^„} be a sequence of

polynomials such that

0=   lim   [\p„-g~lXEk\ dii0=  hm   [  \p„g-XEk\ JM-

Thus x£j e P2(/t). Since xEt ^ Xe weak* in l°°(mX Xe g ^2(m) n L°°(/i).   □
Proof of Theorem 4. If P2(fi) n Lx(p) = P°°(ft), then it is easy to see that the

theorem holds, and A is the empty set.

Now suppose P2(ft) n Lx(p) + Px(p). By Lemma 6 and Theorem 4.5 of [2],

log(dft0|i/m) G Ll(m) where ft0 = ft|3D. Szegö's Theorem now shows that

(8) ft(3D)<ft(D").

A standard argument shows that W = {F ç 3D: Xf g P2(lx) n L°°(ii)} contains a

unique maximal element, A. Since P2(ft)nL0C(ft)^ Px(p), Lemmas 5 and 7 imply

ft(A) > 0.
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It is now shown that P2(ft) n L°°(ft) = P°°(ft|C\ A) © L°°(fi|A). If / G L°°(ja]á)

let ( pn) be a sequence of polynomials such that p„ -* / in L2(p0) = P2(p0). Since

P„Xa -»/rn L2(ft), /g P2(ft) n Lx(p). Now suppose that /g P°°(fi|C\ A). Let

{ Pa) be a net of polynomials that converges to / weak* in L°°(ft|C \ A). Since the

net {pa} converges to / weak* in L2(ft|C\A), a sequence consisting of convex

combinations of elements from the set ((1 - Xa)P«} converges to / in L2(p). This

shows that P°°(ft|C \ A) © L°°(ft|A) ç P2(ft) n L°°(ft).

To show the reverse inclusion, let / g P2(fi) n Lx(p) and select g in Px(p) such

that (/- g)|D = 0 (Lemma 5). If E = {z e 3D: (/- g)(z) * 0}, then according

to Lemma 7,

x£GP2(ft)nL-(ft).

By the maximality of A,   £ ç A;   so (1 - XaX/ ~ g) = 0-   Therefore (1 - X\)f =

(1 - Xa)# e ^°°(M|C \ A). Since / = (1 - Xa)/ + XJ, (a) of Theorem 4 holds.

Now, for notational convenience, let v = ft|C\A, v' = ft|A, and aap(5) be the

approximate point spectrum of S. Since S = 5„ © S„< and S„- is normal, it follows

that

a(Sj\aap(5j 3 a(5j\aap(5j = a(Sj \aap(5j.

By Theorem 1.1 of [9], 5a(p) 2 Ba(p) = D; hence ¿^(c) = D. Since, in general,

Ba(v) is contained in the interior of the Sarason hull of v, it will follow that v is an

m-measure if P°°(v) has no L°°-summand. Suppose L°°(v\2) is an L ""-Summand of

P°°(v) (viz. Px(v) = Px(v\C \ 2) © Lx(vß)). Since £„(»<) = D, 2 ç 3D \ A. This

contradicts the maximality of A; thus (b) of Theorem 4 holds.

To obtain (c), apply what has already been proved to the m-measure ft|C \ A and

use the maximality of A.

To prove uniqueness of A suppose that Ax is any subset of 3D that satisfies the

conditions of the theorem. Since Xa e P2(íO n Lx(p) and A is the unique maxi-

mal element of W, A, ç A. By (c), Xa\a, e P2(^\^i) © Lx(p\Ax) = Hx. If

Xa\a ^ 0' then ft(A\ Ax) = ft(3D). It then follows that Xa\a¡(z) = 1 f°r every z in

D. This contradicts (8) and establishes the theorem.   D

This paper concludes with four easy consequences of Theorem 4. The following

notation will be useful.

Notation 9. (i) Assume ft is an m-measure and <i> g P2(jtt) n Lx(p).

(ii) N is the normal operator of multiplication by z on L2(p).

(iii) ^(Sp) and <¡>(N ) are the operators of multiplication by 4> on P2(ft) and

L2(p), respectively.

(iv) If ft is an m-measure and A is as in Theorem 4, then ft, = ft|C\A and

ft2 = ft|A. The decomposition of <i> with respect to P2(ft) n Lx(p) = Px(px) ©

L°°(fi2) is <i> = 4>x © (f>2.

Corollary 10. Suppose that ft and v are m-measures. If S^ and Sv are quasisimi-

lar, then {S Y is isometrically isomorphic and weak* homeomorphic to {S^}' via a

map that takes Sß to S„.
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Proof. Let A, 2 ç 3D be the sets given by Theorem 4 in the decomposition of

P2(/x) n Lx(p) and P2(v) n Lx(v), respectively. The decomposition of S and Sr

into their pure and normal parts is

S» = S„ © %2    and    S„ = 5„, © A^.

Since N    and iV„   are unitarily equivalent [3], Lx(p2) = Lx(v2). The map is now

obvious since Px(px) = Hx = Px(vx).   D

Corollary 11. Let p be an m-measure and 4> = <j>x © <f>2 be in P2(ft) n Lx(p).

Then:

(a) me minimal normal extension of <p( S ) is <p(N ) if and only if <px is not constant;

(b) if (¡>x is constant, then <¡>(S ) is normal;

(c) o(<f>(S )) = <í>(D)" U {¡inessentialrange of <}>2}.

Proof. Corollary 11 is a direct result of Corollary 3.2 and Theorem 4.2 of Chapter

VIII of [4].    D

The proof of the next corollary is left to the reader.

Corollary 12. Let p be an m-measure. A subspace Jl of P2(\x) is a hyperin-

variant subspace for S if and only if M = J( x ® Ji 2 where J?x is an invariant

subspace for S   and M2 is a reducing subspace for N .

If ft is any measure, Theorems 2 and 3 of [7] show that S has an invariant

subspace that is not hyperinvariant if and only if P2(ft) n Lx(p) =h Px(p). Thus

Theorem 4 yields the following result.

Corollary 13. Let p be an m-measure and A be as in Theorem 4. Then S^ has an

invariant subspace that is not hyperinvariant if and only if A is nonempty.
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