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A REMARK ABOUT VISCOSITY SOLUTIONS
OF HAMILTON-JACOBI EQUATIONS AT THE BOUNDARY

P. E. SOUGANIDIS1'2

ABSTRACT. We consider viscosity solutions of first-order partial differential

equations of Hamilton-Jacobi type in bounded domains. We give criteria which

identify boundary points at which the equation is automatically satisfied in the

viscosity sense, if it holds in the interior. These complement some recent results

of M. G. Crandall and R. Newcomb [3].

Introduction. The theory of scalar nonlinear first-order partial differential

equations has been substantially developed with the introduction by M. G. Cran-

dall and P.-L. Lions [2] of the correct class of generalized solutions. We continue

by recalling their definition. Let K be a subset of RN and F: K x R x TLN —> R

be continuous (i.e., F G C(K x R x RN)). A function u e C(K) is called a vis-

cosity solution of F(y, u, Du) < 0 on K if for each real-valued function <f> which is

continuously differentiable in a neighborhood of K and each local maximum z G K

of u — <f> relative to K one has

(0.1) F(z,u(z),D(p(z))<0.

Here Dtp = (<j>yi,.. ■, <PyN) is the gradient of 4>. We will use the notation CX(K)

to mean the set of functions which are defined and continuously differentiable in

a neighborhood of K. Similarly, a viscosity solution of F(y, u, Du) > 0 in K is

a u G C(K) such that for every 4> G Cl(K) and local minimum z € K of u — cb

relative to K one has

(0.2) F(z,u(z),DcJ(z))>0.

A viscosity solution of F = 0 on K is a function which is a viscosity solution of

both F < 0 and F > 0. We also call viscosity solutions of F < 0 (F > 0) viscosity

subsolutions (respectively, supersolutions) of F = 0. In view of this definition

viscosity solutions do not have to be differentiable at any point. The set Kis also

general. In what follows, however, we will be concerned with cases in which K

satisfies f] c K c fi, where U is an open subset of RN, 0 is its closure and d£l is

its boundary.

The notion of viscosity solutions is important in view of the interaction between

equations of Hamilton-Jacobi type, control theory and differential games. The first
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uniqueness theorems using this notion are proved in M. G. Crandall and P.-L. Lions

[2]. M. G. Crandall, L. C. Evans and P.-L. Lions [1] provide a simpler introduction

to the subject while the book by P.-L. Lions [6] and the review paper by M. G.

Crandall and P. E. Souganidis [4] provide a view of the scope of the theory and

references to much of the recent literature.

Our current interest is generated by some recent results of M. G. Crandall and

R. Newcomb [3]. In particular, they gave criteria which identify boundary points

at which an inequality is automatically satisfied in the viscosity sense if it holds in

the interior of a set. Our main results, which we introduce and prove in §1, are

of similar nature. The assumptions on F are more restrictive here than in [3]; the

results, however, apply to more general sets K than [3]. Examples establishing the

above remarks are also given.

1. Let Q be an open subset of RN and <9fi its boundary. We consider sub- and

supersolutions u G C(íT) of an equation F — 0 on fi. We want to identify a subset

If of dfi (which following [3] we call the part of dfi irrelevant for F) such that u

is a sub- or supersolution of F — 0 on fi U If- Our concern is about the generality

of u, fi and F under which such a result holds. We begin with a general open set

fi. We need to define an appropriate set of normal directions at a point z G <9fi.

We will do this using the properties of the function

(1.1) d(y) = inf{\y -w\2:w G dÜ},

which is the square of the distance from y to 3fi. Associated with d(y) is the set

(1.2) Py = {wedn-.d(y) = \y-w\2},

which consists of all points of dfi which are nearest y. To describe the properties

of d, we need the following definition.

DEFINITION 1. For a function / G C(fi) and x G fi,

D+f(x) = (p € R»:TET f{y) - W - * •(y - X) < o) .
{ »-.* \y-x\ J

We have

PROPOSITION 1. For every x G fi, D+d(x) ^ 0. Moreover, if Px is singleton,

then

(1.3) Dd(x) = 2(x - Px),

where here Px denotes the closest point.

We continue formulating the main results and give the proof of the proposition

at the end of the section. The open ball of radius r centered at z G RN will be

denoted by Br(z), i.e., Br(z) = {y G RN: \y — z\ < r).

DEFINITION 2. Let z G dfi. Then z G If if there is an r > 0 such that for all

y £tïnBr(z) there exists w G Py such that for all (u, p) G R x RN, all A > 0, and

all v G D+d(y),

(1.4) F(w,u,p+\v) <F(w,u,p).

THEOREM 1. Let F g C(fi x R x RN) and z G IF- Let u G C(fi U IF) be a

Lipschitz continuous near z viscosity solution of F < 0 (F > 0) on fi.   Then u is
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also a viscosity solution of F < 0 (respectively, F > 0) on Qu{z}. In particular, if

u is a viscosity solution of F — 0 on fi, then it is a viscosity solution on fi U {z}.

Before proving this result, we want to discuss its relation with Theorem 1 of

[3]. To begin with, Definition 2 imposes on F stronger monotonicity assumptions

than Definition 2 of [3] as can be easily seen using Example 2 of [3]. In this case

(0,0) is not in If- On the other hand, however, Theorem 1 of [3] applies only to

points z G <9fi such that Py is singleton for every y in a neighborhood of z. Such

an assumption cannot hold if, for example, <9fi has a corner at z. Finally, if fi is of

C2 class the two theorems coincide. To illustrate the above remarks, we consider

the following example.

EXAMPLE. Let N - 2 and (x, y) denote points of R2. Put fi = {(x, y) G R2:0 <

x, 0 < y} and

(1.5) F(x, y, u, ux, uy) = u - ux - uy.

We have

f(2x,0)    ifi<y,
D+d(x,y)= I (0,2y)     if y < x,

{{(\2x,p2y):0<\,n<l,\ + p=l}     if x = y

and it is straightforward to check that (0,0) G If and that it does not satisfy the

assumptions of Theorem 1 of [3]. In particular, every (x, x) is not regular, u = 0 is,

however, a viscosity solution of F — 0, which is also a viscosity solution of F = 0

onfiU{(0,0)}.

PROOF OF THEOREM 1. Let u G C(fiU/>) be a (locally) Lipschitz continuous

viscosity solution of F < 0 in fi. Let z G If and put fiz = fi U {z}. If <p G C1(fiz)

and u — <p has 2 as a local maximum relative to fi2, we want to prove that

(1.6) F(z,u(z),D<p(z)) <0.

Let e > 0. Using the arguments of the proof of Theorem 1 of [3], we obtain that,

for r sufficiently small,

(1.7) »,(y) = u(y) - <b(y) - e/d(y)

has a strict local maximum ye G fi fl Br(z) relative to fi satisfying

(i)    Ve ~* z,

(1.8) as e —> 0.

(ii)    *e(ye) -» u(z) - <p(z)

The problem, however, is that we do not know whether Dd(ye) exists. To circum-

vent this difficulty we argue as follows.

For each e > 0 let c£ be a smooth function, compactly supported in 0 — QnBr(z)

with the properties

(1.9) 0 < c < 1    and    ç(ye) = 1.

For 6,9 > Owe define $£: 0 x 0 -* R by

(1.10) #,(*, y) = u(x) - <p(y) - £/d(y) - 2M\x - y\2/62 + 8c(y),
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where M = sup{|u(x)|: x G 0}. We claim that for 6 sufficiently small there exists

(xo>2/o) G 0 x 0 such that

#(*û,îto) = max $(x,y).
0x0

Indeed

$(x,y) < uu(6) + u(y) - <h(y) - £/d(y) + 6ç£(y)     for x,y G 0,

where w„(-) denotes the modulus of continuity of u. The definition of ye and the

previous inequality imply

$(x v)< ( ®(y^yc)+wu(0) - 6     for (x,y) G 0 X (0\suppc-£),

1  ,y> - \ *(ye,ye) + w„(0) for (x,y) G 0 x suppfc.

Let (xn, yn) be a maximizing sequence. If wu(0) < <5, it follows that for n sufficiently

large yn G suppçr£. Moreover, if \xn - yn\ > 6, then $(x„,j/„) < ^(yn,yn)- This

finishes the proof of the claim provided 6 is sufficiently small. It also implies that

1*0 -yo\ < o.
Next observe that xr¡ is a local maximum of x —> w(x) — 2M|x — yo|2/^2- Therefore

F(x0,u(zo),4M(xo -yo)/02) < 0.

Also j/o is a local maximum of y —> —<¡>(y) — £¡d(y) — 2M(xr¡ — y)2/O2 + 8çE(y).

After a simple calculation which we leave to the reader, this yields

(l/£)d2(y0)(D<h(yQ) - 4M(x0 - yo)/02 - 6DcE(y0)) G D+d(x0),

i.e.,

4M(x0 - yo)/e2 = -£p/d2(y0) + D4>(y0) - 8Dç£(y0)     for some p G D+d(y0).

Combining the above, we obtain

(1.11) F(x0, u(x0), D(p(y0) - 6Dc£(y0) - £P/d2(y0)) < 0.

Next let zq G Pyo as in Definition 2 and write (1.11) as

(1.12) F(x0Mx0),D<p(yQ)-6Dce{yo) - ¿pT^jP)

- F (y0,u(x0),D(p(yo) -6Dc£(y0) - p

+ F (y0,u(x0), D<t>(y0) - 6Dc£(y0) - ^     p

- F lzo,u(x0),D<p(yo) - 6Dc£(y0) - ^       p

+ F (z0,u(x0), D<t>(y0) - 8Dç£(y0) - -^— p) < 0.

We treat the various terms of this inequality. First, since u is Lipschitz continuous,

(1.13) \D<p(y0) - 6Dc£(y0) - £p/d2(y0)\ < L,

where L is a Lipschitz constant for u in 0 (see [2, Lemma II.3]). Since |xn — yol < Ö,

we may use (1.13) and the continuity of F to conclude that the difference comprised
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by the first two terms in (1.12) tends to 0 as 9 —> 0 for every 6 and £. As regards

the last term, our assumptions imply that

(1.14)
F(z0,u(x0),D(p(yo) - 8Dç£(y0)) < F(z0,u(x0),D<p(y0) - 6Dç£(y0) - £p/d2(y0)).

To conclude we claim that

(1.15) lim lim  lim wn = lim lim lim zn = z.
e^O 6^0 e^O e^O 6^0 0^0

Indeed, since \xq — yol < 9 and yo G suppç£,

lim yo = hm x0 = yi (e, 6) G supp c£
u—»0 u—»0

along any subsequence 9 —> 0. The fact that (xo,yo) is a maximum of $ yields

u(x0) - <j)(yo) - e/d(y0) + 6<;£(y0) > u(x) - <j>(x) - e/d(x) + 8c£(x).

Letting 9 —► 0 we obtain

u{yi) - <p(yi) - e/d(yi) + 6c(yx) > u(x) - <p(x) - e/d(x) + 6c(x).

Next observe that along subsequences

lim yi(e,«5) = y2(s) G 0
o—>U

and

u(y2) - <t>(y2) - e/d(y2) > u(x) - <j>(x) - e/d(x).

Since y£ is a strict local maximum of \te, we have y2 = ys- The second part follows

from the above and the fact that |yo — ̂ o|2 = d(yo).  Combining all the previous

observations we get (1.6), since the difference of the two middle terms in (1.12), in

view of (1.13), (1-15) and the continuity of F, also tends to 0 as 9 —> 0, 6 —> 0,

We continue by formulating another result similar to Theorem 2 of [3]. Here we

will assume less on u at the expense, however, of F.

DEFINITION 3. Let z G If- Then z is regular for F if there exists an r > 0

such that for all sequences yn G Br(z) C\ fi convergent to z, if wn G PVn is given by

Definition 1, then for all Xn > 0 and qn G Rw satisfying

(1.16) A„|yn - zn\ \qn\ -> 0,

we have

(1.17) liminf F(yn,u,p- Xnqn) - F(wn,u,p - \nqn) > 0
n—>oo

uniformly for bounded u and p.

We have

THEOREM 2. Let F G C(fi x R x RN). Let z G IF be regular for F and

u G C(fi U If) be a viscosity solution of F < 0 (F > 0) on fi. Then u is also a

viscosity solution of F < 0 (respectively, F > 0) on fi U {z}. In particular, if u is

a viscosity solution of F = 0 on fi, then it is a viscosity solution on fi U {z}.

PROOF. The proof follows the proof of Theorem 1 exactly up to the discussion

of the four middle terms of (1.12). To continue we make the following observation

concerning D+d(yo) for yo G fi.

(1.18) If V G D+d(y0), then p/2dl'2(y0) G D+dl'2(y0).
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Indeed, Definition 1 and (1.1) imply

^2(y)-^(yo)<   im„p,im„,-(y-yo) +
dV2(y) + dV2(yo)   ™    «""     dW(y) + d^(y0)

and thus (1.18).

Next observe that in view of (1.18) and the fact that d1'2 is Lipschitz continuous

with constant 1, (1.13) still holds with a constant L independent of 9. Thus the

difference of the first two terms again goes to 0.

Next observe that (1.15) still holds and, in particular,

lim lim yo = ye-

This implies that (1.13) still holds with a constant which is independent of 9 but

may depend on e. Thus the difference of the first two terms again goes to 0. After

sending 9 —» 0, we are left with the difference

F l Vi, u(yi), D<p(yi) - 8Dc£(yi) - ^7—- qA

- F (zi,u(yi),D(p(yi) - 8Dç£(yi) - ^pj-^li

with |qi| < 2a1/2(yi). Sending S —► 0 we obtain the difference

F \^2,u(y2),D<b(y2) - ^—g2J - F lz2,u(y2),D(p(y2) - -JL—qA ,

with \q2\ < 2d1/2(y2). The latter follows from (1.18) and the fact that d1/2 is

Lipschitz continuous with constant 1. However, D(p(y2) and u(y2) are bounded

and

M - ¿2   ,2,   J92  < -jta ~* °'d2(y2) d(y2)

as follows immediately from (1.8) and the definition of \l>£.

Applying (1.17) we complete the proof.

REMARK 1. Some of the arguments of the proof of Theorem 1 are similar to the

ones used by L. C. Evans [5] in proving the single-valuedness of the Hamilton-Jacobi

operator.

REMARK 2. One can formulate uniqueness theorems corresponding to Theorems

1 and 2. There are many possible variants of these results, which resemble the ones

of [3]. Thus we refer the interested reader to [3].

REMARK 3. In view of the above results as well as the results of [3] one can

formulate very general theorems concerning domain of dependence.

We conclude the section with few remarks about the proof of Proposition 1. The

second part is standard and we leave it for the reader.

To prove that D+d(yo) 7^ 0 for every yo we argue as follows. For y near yo let

Wy and wo be minimizers of (1.1) on if. Then

(1.19) \y - wy\2 - \yo - uiy\2 < d(y) - d(y0) < \y - w0\2 - \y0 - w0\2.

Subtract 2(yi — yo)(yo — u>o) from the middle and right-hand term of (1.19) and

divide by |y - y0|. This gives

,.           d(y) - t¿(y0) - 2(y0 - w0)(y - yo)
limsup -¡-;- S U

y-+va \y-yo\
and thus the result.
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