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ESSENTIALLY TRIANGULAR ALGEBRAS1

J. A. ERDOS AND A. HOPENWASSER

ABSTRACT. If M is a nest, then the set of all bounded linear operators T

such that TP — PTP is compact for all P in }J is the essentially triangular

algebra associated with M. Put another way, essentially triangular algebras

are the inverse images under the Calkin map of nest-subalgebras of the Calkin

algebra. J. Deddens has characterized nest algebras in terms of operators

whose half-orbits under similarity by a positive invertible operator are bounded

in norm. This paper, by substituting essential norms for norms, provides a

related characterization of essentially triangular algebras.

There are three different ways one could define "nest algebra": as the set of

all operators which leave invariant a given chain of projections on Hubert space;

as the set of analytic operators with respect to some ultraweakly continuous one-

parameter family of inner automorphisms of B(M); and as the set of all operators

which have a norm bounded half-orbit under the similarity transform induced by

a given positive invertible operator. The first definition is the original one due to

Ringrose [10]; the second is the Loebl-Muhly characterization of nest algebras [8];

the third is Deddens' characterization [4]. Deddens' original proof of his descrip-

tion of nest algebras is based on the Loebl-Muhly characterization, which in turn

uses Arveson's theory of spectral subspaces. An elementary proof of the Deddens

characterization may be found in [5]. In this note we extend those arguments to

apply to essentially bounded half-orbits and to essentially triangular algebras (i.e.,

those operators which leave a chain of projections invariant modulo the compact

operators).

Compact perturbations of nest algebras play a significant role in the theory of

nest algebras. This is particularly evident in the work on similarities and multi-

plicity by Andersen [1, 2], Larson [7], and Davidson [3]. At least tacitly, compact

perturbations lead to subalgebras of the Calkin algebra. If a nest of projections in

the Calkin algebra is the image under the canonical quotient map of a nest in B{U),

then the associated nest algebra in the Calkin algebra is the image of an essentially

triangular subalgebra of B(M). Thus, the Deddens condition stated with the essen-

tial norm in place of the usual operator norm is related to nest-subalgebras of the

Calkin algebra. Nest-subalgebras of other C*-algebras have been studied recently

by S. Power [9].

Fix notation as follows: U will denote a separable Hubert space; B(M), the

set of bounded linear operators on )i; K, the set of compact operators, and Q =

Q(M) = BCH)/K, the Calkin algebra. If M is a nest of projections in B(M), then,
as usual, AlgJV = {T G 8(M):TP = PTP for all P G M}.  Let ET(JV) = {T G
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B(M):TP - PTP G K for all P G M}. ET (.A/) is called the essentially triangular

algebra associated with M.

Let A be a positive invertible operator in B(M) and let E(-) be the associated

projection-valued spectral measure for A (so A = JR XdE(X)). Define the spectral

nest of A to be the family of all projections of either of the forms E[0, t) or E[0, t],

for t > 0. A spectral nest is clearly closed in the strong operator topology and, in

particular, complete as a sublattice of the full projection lattice in B(M).

Let M be a nest and let A be any positive invertible operator whose spectral

nest is M. (The existence of such operators is a routine matter.) Then Deddens'

result states that Alg.A/ = {T G B(U): the sequence \\AnTA-n\\,n = 0,1,2,...,

is bounded}. We shall refer to {AnTA-n: n = 0,1,2,...} as the half-orbit of T

under the action of A. Note that the norm-boundedness of the half-orbit of T

depends only on the choice of nest M ; it is independent of the choice of operator

with spectral nest equal to M. If we replace boundedness in norm by boundedness

in essential norm, then the choice of the operator A becomes significant.

The essential norm of an operator T in B()l) is given by ||T||e = inf{||T+.K'||: K G

K}. If 7r: B(U) —* Q. is the canonical quotient map of B(U) onto the Calkin algebra,

then ||T||e = ||7r(T)||. Fix a nest M and a positive invertible operator A whose

spectral nest is M. Let B(A) denote the set of all operators T whose half-orbit

is essentially bounded; i.e., B(A) = {T G B(M): the sequence ||AnTA~n||e,n =

0,1,2,..., is bounded}. Our first task is to characterize B(A).

For each E > 0 in M, define Xe = ||A.E||; for each E < I define pe =

||A~iE-L\\~1. Then AE1- > heEl and fiE is the largest constant with this prop-

erty. (One may think of ¡ie as the "greatest lower bound" for A on E1-.) Because

N is the spectral nest for A, Xe < p-e for all E ^ 0,1. If Xe < ßE, we say that

A has a jump at E. Since ||A_1||_1 = fio < ^E < Mê < ^i — ||-A||> there are at

most countably many jumps, and at most finitely many with ¡j,e — Xe greater than

some specified value. A fairly routine argument yields the fact that, given e > 0,

there is a finite subnest 0 = E0 < Ei <■■■< Ek = I of N with the following two

properties:

(i) if A has a jump at E with p,E~ Xe > S, then E = Ex for some i = 1,2,... ,k—1,

(ii) XEl+1 - Pe, < e for all i = 0,1,..., k - 1.

One other remark is in order. Generally speaking, when E < F we usually have

Xe < Pf- In one case an exception is possible: if E has no immediate predecessor,

F has no immediate successor, and E is the immediate predecessor of F, then we

may possibly have ||Ai?|| = ||^4. x^r'-1-1| 1 ; i.e., Xe = P-f- This common value is

then an eigenvalue for A; the corresponding eigenspace is the range of F - E.

Let J = {(E, F)\E, F G M and XE < Hf}- So, J consists of all the pairs (E, F)

with E < F, E ^0, F j¿ / except the special pairs described above and also all the

pairs (E, E) for which A has a jump at E. We are now in a position to characterize

8(A).

PROPOSITION 1. Let A be a positive invertible operator with spectral nest M.

Then B(A) = {T G 8(U): F^TE G K for all (E, F) G J}.

PROOF. First suppose that T G B(A). Let M be such that ||AnTA-™||e < M

for all n = 0,1,2,.... Suppose (E,F) G J.   Then \\AE\\e < \\AE\\ = XE and
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||i4-1F-L||e < IIA-1^-1!! = 1/p.F- For each n > 0, we have

\\F^TE\\e = ||F-LA-nAnrA-,Mn£||e

< \\A'nF±\\e\\AnTA'n\\e\\AnE\\e < (\E/pE)nM,

Since Xe/pe < 1, this implies that ||JF,J-TJS;||e = 0, i.e., FLTE G K.
Now assume that F^TE G K for all pairs (E, F) G J. We shall prove that

T G B(A) by showing that ||AnTA-n|| < 7||T||e for all n > 0. Fix n once and

for all. Choose £ = ^po(21,n — 1). The choice of e is dictated by the following

property: If A and p, are any two numbers such that po < fi < X < p, + 2e, then

(X/p)n < 2. Now choose a finite subnest 0 = E0 < Ei < ■ ■ ■ < Ek = I of M so that

^Ei+i — ßEi < £ for all ¿ = 0,1,..., fc — 1 and so that whenever A has a jump E

with (¿e — Xe > £, then E = Ei for some i. Let A¿ = Ei — 25¿-i, i = 1,2,..., k.

Let To = Ef=i A<TAi, Tx = E?=i" Aî+.TAt and R = T - T0 - Ti. We
shall show that ||AnT0A-n||e < 2||T||e, ||ylnTiA-n||e < 2||T||e and \\AnRA-n\\e <

3||T||e. Since AnTA~n = AnRA~n + AnT0A~n + AnTiA~n, this will yield

||AnTA-n||e < 7||T||e, as desired.

Since A commutes with each A¿, we have ||A™ToA_ri||e = max ||A™A¿TA¿A~"¡|e

and ||AnTiA-"||e = max||A"A2+1TAîA-"||e. For each i = 1,2,...,k, ||AnA¿||e <

||A"A¿¡| < XEi and ||A»A-n||e < ||A¿A-n|| < {lfpEi_t)n. Further, by the choice

of the partition, XEi < Me¿-i + £i whence

l^AiTAiA^We < (XEjPEU^rWTWe < 2\\T\\e.

From this, ¡|AnTnA_n||e < 2||T||e is immediate. A slight variation will take care of

A"T,A-n. Let H = {i\XE% = Pe,}- lfi&H, then (£*,£<) G Janà Al+iTAt G K.
If i G H, then XEi < pEi-i + £, ^£¿ = PEi, and Xeí+1 < PEt + £, whence

Xeí+1 < ßEi_! + 2e. Therefore, for i G H,

\\AnAi+iTAiA-n\\e < (AK|+1//tB|_1)B||r||. < 2¡|T|¡e.

Since Y,i<¿H AnAt+iTAlA~n G K, we obtain

\AnTiA~ J2 AnAl+iTAzA-

max||A"AI+1TAîA-n||e<2||T||
i€íf

All that remains is to prove that ||AnÄA-n||e < 3||T||e. Let AT = J2t<J AiTAj

and K = E¿>J+2 A^TAj. Then R = N + K, N G Alg JV and K G K. The

inequality ||AniVA~n|| < \\N\\ for N G Alg M is proven in [5]. The exact same

proof remains valid for essential norms, so we have ||AnJVA_n||e < ||iV|je. Since K

is compact, we then obtain the string of inequalities

||A"ÄA-n||e = \\AnNA-n\\e < \\N\\e

= ||Ä||e<||r||e + ||r0||e + ||r1||e<3|iT||e,

and we are done.

If M is a nest in B(U), then n(M) is a nest in Q and A]gir(M) is a nest subalgebra

of Q. Clearly, 7i-1(Alg7r(.A/)) = ET(M) = {A G B(M)\E^AE G K for all E G M}.
Equally clearly, Alg M + K Ç ET(.V); whenever M is infinite the containment is
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proper. (By [6], Alg M + K consists of those elements A of ET(A/) for which the

map E —> E1AE is a strong operator topology-norm topology continuous map of

M into K.)

Suppose A is a positive invertible operator with spectral nest M. By the propo-

sition above, ET(M) Ç B(A). Since A can have at most countably many jumps,

if M is uncountable the containment is proper. If M is countable, there exists a

positive invertible operator A with spectral nest M such that ET (.A/) = B(A). In

general for countable nests, there exist positive invertible operators for which B(A)

is strictly larger than ET(.A/). If, however, E has an immediate predecessor and an

immediate successor for every E ^ 0,1 in M, then ET(XI) = S (A) regardless of the

choice of A.

Finally, note that if An is a positive invertible operator with spectral nest M and

if E G M, E 4 0,1, then A = A0 + E is also a positive invertible operator with

spectral nest M. Furthermore, A has a jump at E. Consequently, the following

proposition is evident.

PROPOSITION 2. Let M be a nest. Then ET(X) = f|{S(A):A is a positive

invertible operator with spectral nest M}.

Epilogue. Every essentially triangular algebra is the inverse image under the

Calkin projection of a nest-subalgebra of the Calkin algebra. This raises two related

general questions:

(1) Which nest-subalgebras of the Calkin algebra lift to an essentially triangular

algebra?

(2) Which nests in the Calkin algebra lift to a nest in B()i)l

It should be pointed out that the term "nest" is used here in two different

senses. In the Calkin algebra, a nest is a totally ordered family of projections which

is complete as an abstract lattice. In B(M), a nest must be complete as a sublattice

of the lattice of all projections in B(H). (This is equivalent to closure in the strong

operator topology.) The term chain is used to refer to any totally ordered family

of projections, regardless of completeness.

Recently, Ken Davidson has made significant progress with the second question

(private communication). He has proven that any countable nest in the Calkin

algebra lifts to a nest in B(M) and he has given an example of a continuous nest

(i.e. a nest order isomorphic to the unit interval [0,1]) in the Calkin algebra which

cannot be lifted to a continuous nest in B(M). The nest in the example can be lifted

to a chain in B(M). The closure of this chain in the strong operator topology is the

totally atomic nest whose atoms are ordered as the rational numbers. Davidson has

also proven that a chain of projections in B()i) which is order isomorphic to [0,1]

can be compactly perturbed to a continuous nest if and only if the completion of

the atomic part of the strong operator topology closure of the chain is countable.
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