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A COMPLETENESS THEOREM
FOR TRIGONOMETRIC IDENTITIES

AND VARIOUS RESULTS ON EXPONENTIAL FUNCTIONS

LOU VAN DEN DRIES1

ABSTRACT. All valid identities in terms of variables, real constants, the

arithmetic operations of addition and multiplication, and the trigonometric

operations of sine and cosine are shown to be consequences of a few familiar

identities and numerical facts. We also indicate how to decide whether / even-

tually dominates g, for / and g from a certain class of exponential functions.

Finally, we correct a statement from an earlier paper.

Introduction.  Consider the familiar identities:

(1) cos(x + y) = cos x • cos y — sin x • sin y,

(2) sin(x + y) — cos x ■ sin y + sin x • cos y,

(3) cos(—x) = cosx, sin(—x) = — sinx.

From these identities and numerical facts like cosO = 1 we can derive other

identities like cos2 x + sin x — 1. The question came up (cf. [HR, p. 31]) whether

all valid identities formulated in terms of variables, individual real numbers, the

functions cos and sin, and the ring operations +, —, ■ can be derived from the

identities (l)-(3) above, plus the identities defining commutative rings with unit

1, plus the "true numerical facts", these being the valid identities not containing

variables. (We allow terms like sin(cosx).)

In §1 we shall answer this question affirmatively.2

In [L, p. 219] H. Levitz asked whether "eventual dominance" for a certain class

of exponential functions could be effectively decided. We now indicate a larger class

of exponential functions for which we found a decision method. To describe this

class of functions let us define a Skolem monomial to be a formal product

M = P0-P?1.P?k,

where Po, Pi, ■ ■ ■, Pk are rational functions in X over Q, such that Pi(x),..., Pk(x)

are > 0 for all sufficiently large real x, and Qi,...,Qk are polynomials in X over

Q. (So M(x) is a well-defined real number for sufficiently large x.)

// Mi,..., Ms are Skolem monomials, then either Mi (x) + ■ ■ ■ + Ms (x) > 0 for

all sufficiently large x, or Mi(x) + ■ • ■ + Ms(x) = 0 for all sufficiently large x, or

Mi(x) + • • • + Ms(x) < 0 for all sufficiently large x.

This fact follows from the main theorem in Hardy's book [H], but the proof there

does not lead to a decision procedure.
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In §2 we show how to decide for any given Skolem monomials Mi,..., Ms which

of the three alternatives holds. The proof depends on unique factorization and the

fact that e is transcendental.

In §3 we point out a false statement in the author's article [VdD], and substitute

a correct statement. I thank E. Bouscaren for casting doubt on the statement in

[VdD].

1. A completeness theorem for trigonometric identities.

(1.1) Let L = {0,1,+,—,-} be the usual language of rings with unit 1 and

Lr = L augmented by a constant symbol (name) for each real number. Further let

c and s be two extra 1-place function symbols and define Tr(R) (for trigonometry

over R) to be the equational theory in the language Lr, U {c, s} axiomatized by the

following identities:

(1) the ¿-identities defining commutative rings with 1;

(2) the trigonometric identities: c(x + y) — c(x)c(y) — s(x)s(y), s(x + y) =

c(x)s(y) + s(x)c(y), c(-x) = c(x), s(-x) = -s(x);

(3) the true numerical facts: all sentences r = 0 true in R, where r is an

LR.U{c,s}-term not containing variables; the symbols c and s are to be interpreted

as cos and sin respectively.

(1.2) THEOREM. Let t(x),x = (xi,... ,xn), be an Lr\J{c,s}-term such that

r(r) = 0 for each f = (ru ... ,rn) G Rn. Then Tr(R) h Vx(r(x) = 0).

(1.3) The proof is somewhat indirect, and we first derive a completeness result

for identities which may also involve the exponential function exp(x) = ex.

So let e be a new 1-place function symbol and define T(e,c,s) as the equational

theory in the language L(e,c,s) = L U {1/2, e, c, s) axiomatized by:

(a) the identities for commutative rings with 1, plus the identity \ + \ — 1,

(b) e(x + y) = e(x) ■ e(y), e(0) = 1,

(c) the trigonometric identities as in (2) above,

(d) all sentences t = 0 which are true on R, where r is an L(eCiS)-term not

containing variables. (Here e, c, s are interpreted as exp, cos and sin on R.)

(1.4) THEOREM. Let t(x), x = (xi,...,xn), be an L(e¡Cta)-term such that

r(r) = 0 for all? = (ri,...,r„) € R™.  Then

r(e,e,.) H Vx(r(x) = 0).

(1.5) First we have a simple lemma. Let i be a new constant symbol and define

Euler as the equational Le,c,s(i)-theory axiomatized by Euler's identities

c(x) = (1/2) • (e(ix) + e(-ix)),        s(x) = (~l/2)i ■ (e(ix) - e(-ix)).

These identities can be used to eliminate the symbols c and s at the expense of

introducing the new symbol i, in other words, we have

(1.6) LEMMA. For each L(ejCjS)-ierm r(x), x = (xi,...,xn), there is an LA

{1/2,i,e}-term re(x) such that Euler h r(x) = re(x).

(1.7) PROOF OF THEOREM (1.4). By model theory it suffices to show that,

given any model R of T(e,c,s), we nave R ^ Vx(r(x) = 0). Let A be the smallest

subset of R containing 0, 1/2, 1 and closed under +, —, -, exp, cos and sin. Clearly
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A is the underlying set of a T(eCiS)-model A. Let $: A —► R be the unique L(e,c,s)-

morphism. We consider R as an A-algebra via $. The subring A[i] = A + A ■ i of

C is also closed under exp, cos and sin, since exp(a + bi) = exp a ■ (cos b + i sin b).

Consider now the A[¿]-algebra R ®a A[i]. The usual identifications give that

R®A A[i] — R[i], and R[i] is a free Ä-module on the basis l,i. This allows us to

extend the operations e, c, s on fi to R[i\: put e(A + ¡xi) — e(X) ■ (c(/x) + i ■ s(p)) for

X,p G R. It is easy to verify that the operation e on R[i] extends the operation e

on R and is a morphism of the additive group of R[i] into the multiplicative group

of units of R_\i). We also put, for z G R[i\:

c(z) = (1/2) • (e(iz) + e(-iz)),        s(z) = (-1/2)» • (e(iz) - e(-iz)),

and again c and s on R\i] extend c and s on R. It is clear that the structural

morphism A[i] —► R[i] is also a morphism for the e-operation. From the assumption

that r(r) = 0 for all f G Rn we get by analytic continuation that r(r) = 0 for all

r € C™. Let re(x) be an lU {1/2,¿,e}-term such that Euler A r(x) = re(x). (Such

a term exists by the lemma.) Hence A[i) (= Vx(re(x) = 0), and since the E-ring

A[i] satisfies the hypotheses of [VdD, Proposition (4.1)] (with r = 1, dx = d/dxi),

we get that Vx(re(x) = 0) is also true for every E-ring S for which there exists an

.E-ring morphism A[i] —* S (where 1/2, i are to be interpreted by their image in

S under this morphism). In particular the sentence is true in S = R[i], and since

R[i] N Euler, we get R[i] \= Vx(r(x) = 0), hence R t= Vx(t(x) = 0).

(1.8) For the proof of Theorem (1.2) we need the following relativization of (1.4).

Let L(eiC)S)(R) be the language L(e,c,s) augmented by a constant symbol for each

real number, and let T(e<c,S)(R) be the equational L(eiC]5)(R)-theory which has the

same axioms as T(e c s) except that in clause (d) we allow L(e c s)(R)-terms (see

(1.3)).
We now have the following result which is proved in the same way as Theorem

(1.4).
Let t(x), x = (xi,... ,xn), be an L(eiCjS)(R)-ierra such that r(r) — 0 for all

f G Rn.  Then T(e,CiS)(R) h Vx(r(x) = 0).' '

(1.9) We can now prove our trigonometric completeness result.

PROOF OF THEOREM (1.2). By model theory it suffices to show that, given

any model R of Tr(R), we have R N Vx(r(x) = 0). We may of course assume

R ^ {0}. We have a canonical Lr U {c,s}-morphism $: R —* R. Since R is

a field and R ^ {0}, $ is injective and $(R) is a direct summand of the R-

linear space R, say R = $(R) © B. We equip R with an operation e by putting

e($(r) + b) = $(exp(r)) (r G R, b G B). It is easy to see that then (R,e) is an

¿?-ring and that $ is also an .E-ring morphism (R,exp) —> (R,e). In other words:

(R,e) 1= T(eiCiS)(R) (see (1.8)), whence (R,e) f= Vx(r(x) = 0). But the symbol e

does not occur in t, therefore R \= Vx(r(x) =0).    D

(1.10) Negative results on identity problems for elementary functions can be

found in [Rl].

2. A decision method for eventual dominance.

(2.1) In this section we solve a slightly generalized form of a decision problem

posed by H. Levitz (see the Introduction). Another solution of Levitz's problem

was found by R. Gurevic [G].
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As is common in dealing with effectivity notions we abuse language to avoid

unwieldy formulations. For instance, we assume tacitly that rings like Q and Q[X]

are recursively presented. To give a concrete example, the precise formulation of

Lemma (2.2) below is as follows:

There is an algorithm which, for any polynomials f(X), g(X) G Q[X] with

g(X) t¿ 0, computes a triple (a, i, e) 6 Q X Z X N such that

f(X)fg(X) = aXl • (1 + axX~l + a2X~2 + ■ • •)

in the formal power series field Q((X-1)), where ai,03,03,... is a recursive se-

quence of rationals with index e.

In the sequel we shall leave the translation of our statements into such pedanti-

cally precise language to the reader.

(2.2) LEMMA. Given a rational function P(X) G Q(X) one can compute a

rational number a, an integer i, and a sequence of rationals ai,a2, as,..., such that

P(X) = aXl ■ (1 + aiX'1 + a2X~2 + ■■■).

PROOF. If P is a polynomial anXn + an-iX"-'1 +-1- an with an ^ 0, then

P = anXn ■ (l + ^^X-1 + ■■■ + ^X-n + 0) ;
V an an J

also

¿=«.-'x-»(.-(^->+...+^-»)+(.,.)'...),
and one computes easily successive rationals 61,62,63,... such that this can be

written as
a~lX~n ■ (1 + biX'1 + 62X"2 + ■■■).

The case of a quotient of polynomials can be reduced to the above cases and

multiplication of power series in X-1 with given rational coefficients.

(2.3) LEMMA. Given (the index of') a recursive sequence of rationals ai,a2,03,

... one can compute a sequence of rationals bi,b2,63,... such that

log(l + aiX-1 + a2X~2 + ■■■) = biX-1 + b2X~2 + 63X~3 + ■■-.

PROOF. The formal power series log(l + Y) is defined by: log(l + Y) = Y -

Y2/2 + F3/3-, and the result follows by substitution.    D

(2.4) In the next lemmas we use expressions E(X) containing the indeterminate

X such that E(x) is a well-defined real number for all sufficiently large x. Such an

expression stands for the germ at 00 of the real function it defines. So an identity

Ei(X) = E2(X) means that Ei(x) = E2(x) for all x > r, for some r G R such that

Ei(x) and E2(x) are defined for x > r.

For P(X) G Q(X) we write P(X) > 0 if P(x) > 0 for all sufficiently large x. So
P(X) > 0 if and only if a > 0, where a is as in Lemma (2.2).

Finally, we let pi = 2,p2 = 3,... ,pn,... be the successive prime numbers.

(2.5) LEMMA. Given P(X) G Q(X) and Q(X) G Q[X], with P(X) > 0, one
can compute a positive integer n and polynomials q(X), qi(X),..., qn(X), q(X(X) G

Q[X], and a sequence of rationals ci, c2, C3,..., such that

P(X)QW = e*W ■ 2«W.pi««*) • X*~W ■ (1 + aX-1 + c2X~2 + ■■■).
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PROOF. Write P(X) = aXl ■ (1 + aiX"1 + a2X"2 + ■ • ■) as in (2.2). Then

P(X)Q{X) -eQW-togP(X)

_ eQ(X).[logo+tlogX+log(l+oiA-l-(-.)]      (using (2.3))

_ eQ(X)-(loëa+ilogX)+Q(X)-[b1X-1+b3X-2 + -]

- eq{X)+qi(X)\oga+q<x¡(X)\ogX , ed1X-1+d3X~3+-

where q(X),qi(X),q00(X) G Q[X], and the sequence of rationals di,d2,dj,, ■ ■ ■ can

be computed from Q(X), i, and the sequence 61,62,63,....

Now factor a as a = 2kl ■ 3fc2.pnn (fc¿ € Z), so we obtain <?/(X)loga =

gi (X) log 2 + <?2(X)log3 + ■■■ +qn(X)logpn for polynomials qi,...,qn G Q[X].

Furthermore, substituting diX-1 + d2X~2 + ■ ■ ■ in the power series eY — 1 + Y +

Y2:/2! + • ■ -, we can compute rationals ci,c2, C3,..., such that

ediX-t+dtX-1+--. _ j + CiX-l + CiX-2 + . .. _

The result is

p(X)Q(x) = eq(x) . 2,l(x).p,n(x) . x,=o(X) . (1 + CiX-i + C2X-i + ...)     D

(2.6) LEMMA. Given Pi(X) > 0,...,Pk(X) > 0 in Q(X) and polynomi-

als Qi(X),... ,Qk(X) G Q[X] one can compute a positive integer n, polynomials

q(X),qi(X),... ,qn(X),qoo(X) G Q[X], and a sequence of rationals ci,c2,cs,...,

such that

Pl(X)Q<x} ■ p2(x)Q*w.pk(X)Q«w

= el(X)  . 2ql{X)  . 392(X).p,n(X)  . X^iX)  . (1 + CiX-l + C2X-2 + . . .}

PROOF. The proof is immediate from Lemma (2.5). Note that one can take the

same n for all powers Pl(X)(^i^x'> by letting some exponents be equal to zero, if

necessary.    G

(2.7) LEMMA. Ifr,ri,...,rnG Q, i/ien r-Ki log 2+r2 log 3+•• +rn log p„ = 0
if and only if r = ri— ■ ■ ■ = rn = 0. For given r, ri,... ,rn G Q one can determine

effectively which of the three statements

( = 0,
r + n log2 +-h rn logpn I > 0,

l<0
/loZds.

PROOF. We may assume the r¿ are integers. Then r + ri log 2+-\-rn logpn =

0 <=> eT = 2~Tl.p~Tn.  Since e is transcendental, this can only happen when

r — 0, which, by unique factorization, implies ri = ■ ■ ■ = rn — 0. The second

statement follows from the first and from the fact that we can compute rational

approximations to logp for p a given positive integer.    G

(2.8) In the following we consider tuples o = (q,qi,... ,gn,c/oo) (n > 0) with

each term in X • Q[X], i.e., o,c/¿ (1 < ii < n) and q^ are polynomials in X over Q

with constant term 0.

To such a tuple o we associate the formal product Fa = eq ■ 2Ql.pnn • Xq°°.

Note that, given any two tuples oi and <T2, one can determine a tuple r such

that Fai (x)/ECT2(x) = FT(x) for all x > 0; by inserting dummy zeros if necessary
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we may assume that o"i and 02 are of the same length and then one obtains r by

t = oi - o2.

(2.9) LEMMA. For any tuple o ^ (0,0,... ,0) there is a constant c > 0 such

that either Fa(x) < e~cx for all sufficiently large x, or Fa(x) > ecx for all suffi-

ciently large x.

For any given tuple a ^ (0,0,..., 0) one can determine effectively which of the

two cases takes place.

PROOF. Let cr = (q, qi,..., qn, g^), and let k be the maximum of the degrees

of the terms of 0. Then we can write

Fa = exp \^Xl(ri + r», log2 + ■ ■ ■ + r»n logp„ + rioo logX) j .

Here the ri,ri. and r^ are rational numbers which we can compute from a.

By definition of k one of the numbers rk,rk ,rk„ is not zero. If r^ < 0, then

Fa(x) < e~cx for some c > 0 and all sufficiently large x.

Suppose rfcoo = 0. By Lemma (2.7) either rk + rkl log 2 +-h rkn logp„ < 0 or

rk + rki log2 + ••• + »>„ logpn > 0. In the first case we have again F„(x) < e~cx

for some c > 0 and all sufficiently large x, and in the second case F„(x) > ecx for

some c > 0 and all sufficiently large x.    G

(2.10) LEMMA. Given P0(X) G Q(X), PX(X) > 0,... ,Pk(X) > 0 in Q(X)
and polynomials Qi(X),..., Qk(X) G Q[X] we can effectively determine a tuple 0,

positive integers m and M, a rational number r, and a sequence of algebraic real

numbers aLm,c¿_m+i,... ,do,di,d2,... such that, with fi = di-er, we have

PoP?1.PfcQfc

= Fa ■ (j-mXmlM + f-n+iX^-VW +... + /„ + flX~1/M + •■•).

PROOF. The case Pn = 0 being trivial, we may assume without loss of generality

that Pn > 0. Using Lemmas (2.2) and (2.6) we can write

Po • PjQl.P?" = Fa ■ (er • 2r'.P;- ■ Xr») • (1 + dX"1 + • • •)

for some tuple o and rational numbers rn, Ti,..., rn, l'os» and a sequence of rationals

ci,c2,....

The last two factors on the right-hand side can be contracted in an obvious way

to a fractional power series of the desired form.    G

We can now prove the result stated in the Introduction.

(2.11) THEOREM. Given any Skolem monomials Mi,... ,MS one can de-

termine effectively whether Mi + ■ ■ ■ + Ms > 0, or Mi + ■ ■ ■ + Ms = 0, or

Mi + ■ ■ ■ + Ms < 0.

PROOF. Write each Mz as

M = Fa(t) ■ (f-miXm/M + F(_m+i)lX(m-1)/M + ■••),

according to the previous lemma. We can do this in such a way that all tuples

o(i) are of the same length and the numbers m, M are also independent of i.

Using (2.8) and (2.9) we may also assume that, for some t G {!,... ,s}, we have
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o(l) = ■ ■ ■ = a(t) = 0, and Fcr^)(x)/Ftr(x) < e~cx for i = t + 1,... ,5, a constant

c > 0, and all sufficiently large x.

This implies that Mi + ■ ■ ■ + Mt dominates Mi+i + • • • + Ms in absolute value,

provided Mi-I-\-Mt ^ 0. We can effectively verify whether or not Mi H-\-Mt =

0 by [R2 or M]. If Mi + ■ ■ ■ + Mt = 0 we have a reduction to a sum of fewer Skolem

monomials.

Suppose that Mi + ■ ■ ■ + Mt ^ 0. Then we can effectively write

Mi + • • • + Mt = Fa ■ (g^mXm¡M + g-rn+iXi™-»'*4 + • • • + oo + oiX-x/M + •■•),

where each coefficient gj is of the form g-, = bijerij + ■ ■ ■ + btjeni, with the 6,-y

algebraic real numbers and the r# rational numbers.

Since e is transcendental we can find the first nonzero coefficient g3 and determine

its sign. If the sign is 1, then Mi +-\- Ma > 0, if the sign is —1, then Mi + • • • +

Ms < 0.    G

3. A correction.

(3.1) In this section we assume some familiarity with the author's article [VdD].

At the end of that paper I claim, without proof, two (equivalent, but false) state-

ments, (*) and (**) (cf. [VdD, p. 65]).

Statement (*) is as follows:

"For each nonzero E-polynomial p(X) over (R, ex), all a, 6 G R

with a < b, and each ordered E-extension field F of (R, ex) we

have: all roots of p(X) in F between a and 6 are in R." (Here,

and in the following, an ordered E-field F satisfies E(x) > 1 + x,

in accordance with the convention of [VdD, p. 64].)

A counterexample to (*) is implicit in [DW]: Take a positive infinitesimal a in

some ordered field R extending R. As in the proof of Corollary 27 in [DW] we

see that (1 + a/n)n < 1 + a + a2/2 < (1 — a/n)n for all natural numbers n, and

therefore, according to Theorem 26 of [DW] we have E(a) = 1 + a + a2/2 for a

suitable ordered E-extension field F of (R, ex). But E(X) - (1 + X + X2/2) is an

example of an E-polynomial over (R, ex ) which has no real root strictly between 0

and 1, and we have a contradiction with (*).

(3.2) The intention behind the (refuted) statement (*) was to indicate universal

axioms satisfied by (R, ex) which, together with the axioms for E-fields and the

diagram of (R, ex), could prove every true instance of "p(X) has exactly k zeros

between a and 6" (p(X) G R[X]£, k G N, a, 6 6 R). This intention can still be

realized, but we need more than just the axiom Vx(E(x) > 1 + x).

Let us define a nicely ordered E-field to be an ordered E-field F such that

\E(x)-Ek(x)\<eX.,  |Xj., forallxeP, fceN,
(/c + 1)!

where Efc(x) = X^=oxiA!-

Now we have the following result which comes in place of (*).

(3.3) PROPOSITION. Let F be a nicely ordered E-extension field of (R,ex),

and p(X) G R[X]ß, p ^ 0.  Then each finite zero of p(X) in F is in R.
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PROOF.  By induction on the complexity of p(X) one shows first that for each

o G R and k G N there is a positive real constant C such that

,     T^p^Ha)  i
p(a + x)-J2 ^T^x

i=0

<C\x
fe+i

for all infinitesimals x in F.

Let 6 e E be a finite zero of p(X) where p ^ 0. Then 6 = a + x for some a G R

and infinitesimal x. Suppose now that 6 ^ R. Then x ^ 0, and it will suffice to

derive a contradiction from this. Since p / 0 we can take k G N so large that the

Taylor polynomial

f(x) = ±^Mx<

is nonzero. From p(6) = 0 it follows that |/(x)| < C|x|fc+1 for some positive real

number c, and this contradicts deg f < k.    G
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