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ON LINKING COEFFICIENTS

NATHAN HABEGGER1

Abstract. The possible values of linking coefficients for two component links are

studied. An example of a link S3 U S2 in S5 having linking coefficient in w3(52) of

Hopf invariant two is constructed. A generalization to links S"'"2 U Sp in S"' is

obtained in the metastable range. Applications to embeddings of two cell complexes

are cited.

0. Introduction and statement of results. Let /: Sa -* Sm, g: Sh -» Sm be a pair of

disjoint (pi) embeddings of spheres (a two component link). The complement

S"'\g(Sh) has the homotopy type of Sm~h~1 if either b^m-3orb = m-2

and g is unknotted. (If b < m — 3, then by Zeeman [Z] g is unknotted.) In either

case, / represents an element of wa(Sm~h~1) called a linking coefficient, which we

denote by /-(/, g).

Problem A. What values can L(f, g) take?

The following theorem restricts the possible values of L(f, g) (cf. Kervaire [K]).

Theorem 1. Suppose L(f,g) and L(g,f) are both defined. Then '2hL(f,g) =

+ ~2."L(g, f) in wa+/)(5",_1), where 2fc, 2" are iterated suspension homomorphisms.

Note that wa+/,(5""_1) is a stable homotopy group. Hence,

Corollary 2. Suppose m — a > 3, m — b ^ 3. A necessary condition for L e

TTa(Sm~h~l) tobe a linking coefficient is that L stably desuspends to ■nh(Sm~a~x).

Using Haefliger's link classification theorem [H] in codimension greater than two,

the above condition is seen to be sufficient in a range.

Theorem 3. Suppose m — a > 3, m — b > 3 and 2a + 26 < 3m — 6. Suppose L

stably desuspends to ■nh(Sm~"~1). Then L is a linking coefficient for some link Sa U Sb

in Sm.

W. Massey has asked: What can be said if one of the factors is allowed to have

codimension 2? For links /: Sm'2 -» Sm, g: Sp -» Sm, q=>m-q-l>2, we

have L(f,g) defined in "nm-2(Sq). However, because of possible knotting of the
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codimension 2 factor, L(g,f) need not be defined. Nevertheless, Levine (unpub-

lished; cf. [F] for an alternative proof) has shown that Kervaire's proof can be

modified to show that L(f,g) is stably trivial (p > 2). A stronger result is in fact

true:

Theorem 4. Let f: Sm~2 -» Sm, g: Sp -» Sm be disjoint embeddings q = m - p -

1^2, p > 2, Then the (single) suspension 2L(/, g) e •nm_l(Sq + 1) of L(f,g) is

zero.

This necessary condition is sufficient in the metastable range:

Theorem 5. Suppose p > 2, q = m — p — 1 > 2 anuí w — 2 < 3g — 3. Suppose

L e ^m-iC^*) satisfies 2L = 0, vv/iere 2L e 77m_1(5'7+1) « ine suspension of L.

Then there is a link Sm~2 U Sp with linking coefficient L. Moreover, S"'~2 may be

taken to be unknotted.

Remark. Since S"'~2 may be taken unknotted, it follows that S"'~2 can have any

knot type. This is surprising since it had been thought that knotting phenomena

might give rise to "obstructions".

Links S3 U S2 are a particular case of Theorem 5. Theorems 4 and 5 can be

restated as follows:

Corollary 6. a e it3(S ) is the linking coefficient of some S3 U S2 in S5 if and

only if a has even Hopf invariant.

There is a close relationship between links and embeddings of two cell complexes

up to homotopy type. Let Sn_1 -» S"'\SP be an embedding. Consider Sm C Dm + 1

c Rm+1. Then "coning off" the embedding yields an embedding up to homotopy

type of S" Ua D" in Rm+1, where a is the homotopy class of Sn_1 -» Sm \ Sp == Sq,

q = m—p — 1^2. Therefore, Theorem 5 yields

Corollary 7. Suppose q ^ 2, n - q^-2 and n < 3q - 2. Let a e ww„1(5''7)

satisfy 2a = 0. Then Sq Uae" embeds up to homotopy type in R" + 2.

It seems likely that the condition 2a = 0 is necessary. We can prove

Theorem 8. If Sq Vaen embeds in R" + 2, n - q > 2, then a is stably trivial.

Corollary 9. S2 Uae4 embeds in R6 up to homotopy type if and only if a has even

Hopf invariant.

(That S2 Uae4 does not embed in R6, for a of odd Hopf invariant, is classical and

due to Thorn [T].)

This paper is organized as follows. In §1 we recall known results in codimension

greater than 2. In §2 we given an explicit embedding of S3, U S2 in S5 with linking

coefficient of Hopf invariant 2. The more general result, Theorem 5, is proved in §3.

We make use of explicit embeddings of Hacon [Hac] and calculate their linking

coefficients. Finally, proofs of Theorems 4 and 8 are given in §4. They both have the

same homotopy theoretical flavor.

The interested reader may refer to [Ke] for a generalization of Hacon's results.
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1. Haefliger's classification sequence. The following result is due to Zeeman (cf.

[Z]).

Proposition. Suppose a < b. Then any L e •na(Sm~h~l) is the linking coefficient

of some link.

Proof. If g: Sh -* Sm is the standard embedding, then S"'\g(Sb) = S"'-^1 X

R*+1. Let <p: Sq — Sm~ft-1 represent L, and let $: S" -* Rh+l be the standard

embedding S" c Ra+1 c Rft+1 (or any embedding). Then / = (<p, t//): Sa -> sm-h'1

X Rh+1 is also an embedding, and L(f, g) = L.

In [H], Haefliger reduces the classification problem for links of codimension

greater than 2 to a problem in homotopy theory. As a particular case, he proves

Theorem (Haefliger [H]). Suppose m - a > 3, m - b ^ 3, b ^ a and b + 3a <

3m — 6. Let L"'h denote the group of isotopy classes of pi links S" U Sh in Sm. There

is an exact sequence

K.t, - ».(S""*"1) ® ^(S"-«-1) Z ^2(s2m-"-h-3),

where \(f,g) = (L(f,g), L(g, /)) and w is the iterated suspension (up to sign) on

each factor.

Remarks. (1) W. Massey has pointed out that the hypothesis b + 3a < 3m - 6

may be replaced by the weaker hypothesis 2b + 2a ^ 3m - 6. This is just the

hypothesis necessary so that the group ■nm_2(S2m~"~h~3) is stable. The proof is as

in [H].

(2) Theorem 3 is an immediate consequence of the exactness of this sequence and

the above remark.

(3) The homomorphism w expresses a symmetry in the linking coefficients, which

we recall here for use later.

Let M be the boundary connected sum of S" X Dma and Sb X D"'~h. Given an

embedding of Sa U Sb in Sm, by Zeeman (since each component is unknotted) we

may extend the embeddings to framed embeddings and hence to an embedding of M

(unique up to concordance).

Let a' = m - a - 1, b' = m - b - \. Then dM = Su X S" #Sh X Sh'. One can

easily check that the inclusion 5"" V S1" -» S"'\M is a homotopy equivalence.

Restricting a homotopy inverse to dM yields a retraction À: 5° X S"' #Sh X S1" -*

S"' v Sh'.

Let Xa, Xh be the homotopy classes of the maps a|s„, a|s„. These are generalized

linking invariants in it t(S"' V S1"). Let ia denote the homotopy class of the

inclusion S"' -* 5"' V S1", and let pa denote the homotopy class of the projection

Sa, v Sb> _, jgau similarly for (ftj p^ Then \a, \h satisfy

(1)/>„ » Aa = 0, pbo\b = 0,

(2)pho\u = L(f,g),pao\h=L(g,f),

(3) [Xa, /'„] + [Xh, ih] = 0, where [ , ] denotes Whitehead product.

Condition (3) is the desired symmetry relation.
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2. An example of a link of S3 and S2 in Ss. Consider S2 X R3 = S5 \ S2 c S5.

Let /: S2VS2->S2xR3be any embedding which up to homotopy is just the

folding map A: S2 V S2 -» S2. Suppose / extends in S5 to an embedding S2 X S2

-* S5. Some small neighborhood X of S2 V S2 in S2 X S2 will be embedded into

S2 X R3. The resulting embedding S3 = dX -* X -* S2 X R3 = S5 \ S2 will have

Hopf invariant two (since dX -* X is, up to homotopy, the Whitehead product

[i'x, i2]: S3 -» S2 V S2 and A°[i,,i'2] = [/,/] has Hopf invariant two). Moreover,

since dX bounds a disk in S2 X S2, this embedding is unknotted in S5.

It is an easy matter to embed S2 V S2 as above: Let D\ c R3 be a disk and

S2 = 3D3. The embedding S2 V S2 c S2 X S2 c S2 X R3 satisfies all the condi-

tions above except that S2 -* S2 X R3 is of degree zero. Choose * g R3 outside of

D\. Define a new embedding S2 V S2#S2 X * (see the diagram), where # denotes

the connected sum along some path joining the two spheres. This now has degree 1

on the second factor. Moreover, since S2 X * bounds a disk in S5\S2 X D\, the

two embeddings are ambient isotopic in S5. In particular, the new embedding also

extends to S2 X S2, as required.

An embedding of S1 V S1 in S1 X R2 c R3

Remark. The link S3 U S2 c 55 may also be obtained as follows: Note that since

/(S3) c S5 is unknotted, 55\/(S3) = 51 X R4. Then g: S2 -» Sl X R4 is an

embedding which, while homotopically trivial, cannot be isotopic to the trivial

embedding.

In [Hac], Hacon shows that embeddings S2 «-» S1 X R4 are classified up to

isotopy by the following: Let 51 X R4 = R5 be the universal cover with transforma-

tion group <r> = Z. Then if g: S2 -» 51 X R4 is any lift of g: 52 -» S1 X R4, the

linking numbers L(g,Tkg) ^ Z, k + 0, are defined and nonzero for only finitely

many fc. The map Ern^S2, Sl X R4) -* ®™_1 Z is a bijection.

Follow the isotopy in the construction of the link backwards. One gets an isotopy

of g(S2) (where S5\g(S2) = S2 X R3) to a new embedding g': S2 -♦ S5 in the

complement of S2 V S2 linking each wedge factor once. Up to isotopy (since any

two such are isotopic) it is precisely the connected sum of g(S2) and S2 X 0 c S2

X D3 c S2 X R3. Note that g(S2) and S2 X 0 link once. Since the path connecting
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them travels once through D3 = S2 X S2 \ S2 V S2, we get

Ur,T*)-{l:   *-;:
3. Proof of Theorem 5. By Hacon [Hac], embeddings of S' in S1 X Äm_1 =

Sm\Sm~2 form a group isomorphic to ®kx,= 1trp(Sq), q = m - p - 1, valid in the

metastable range 3(p + 1) < 2m; i.e., m - 2 « 3q - 3. If <T> - tt^S1 X R"1"1)

denotes the deck transformation group for the universal covering Rm = Sl X Rm_1,

the Hacon invariants are the linking coefficients L(g, Tkg) e ■np(Sq), where g:

SP -► /?"' - S1 X R™-1 denotes any lift of g: 5P -> S1 X R""-1. Note that this is

independent of the choice of lifts.

Associate to any embedding g: Sp -> S1 X Rml = Sm\Sm-2 a link (/, g):

Sm~2 U Sp c Sm. One obtains from this link the linking coefficient L(f,g) in

Using Hacon's isomorphism, this gives a map ®^=l^p(Sq) -» vm-2(Sq) which

can be calculated:

Proposition. The above map is given by the formula

00

k = l

where ßk e wm_2(S2<?-1) is (up to sign) the iterated suspension of ßk.

To prove Theorem 5 from the Proposition, note that under the hypothesis of the

theorem, trp(Sq) is a stable group. Taking /?, = ß and ßk = 0, k =£ 1, we see that

the right side is of the form [/', i\°ß, with ß any arbitrary element of

rrm_2(.S2m~2p~3). Furthermore, under the hypothesis m - 2 < 3q - 3, the EHP

sequence [W, pp. 548-549] is valid. It follows that any element in the kernel of the

suspension homomorphism is of the form [i, i]°ß. Thus if L is in the kernel, let

L = [i, i]° ß. Then L is the linking coefficient of the link Sm~2 U Sp having Hacon

invariant ßl = ß, ßk = 0, k > 1.

Proof of the Proposition. As in §1, Remark (3), extend the embedding

Sm~2 U Sp c Sm to an embedding of the compact manifold M, boundary con-

nected sum of 5m_2 X D2 and Sp x Dq+l. dM = Sm~2 X S1#SP X Sq, and the

inclusion S1 V Sq -> 5m\Afis again a homotopy equivalence. The restriction of a

homotopy inverse to dM yields a retraction \: Sm~2 X Sl#Sp X Sq -* Sl V 59.

The Hacon invariants are contained in the homotopy class of the map (denoted by

ß) X\SP: Sp -» Sl V S?. The desired linking coefficient L(/, g) is obtained from the

homotopy class (denoted by a) of the map a|s„-2: Sm~2 -» 51 V 59 by composing

with the projection to 5*. Furthermore, a and /? are related by the formula

(T-l)a+[ß,i] = 0,

where i is the homotopy class of the inclusion Sq -» S1 V 5*, and (T) =

^(S1 V Sq) acts on ^^(S1 V 5*) in the usual fashion. Now since T - 1 is injective,

we are able to calculate a from ß.
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Under the dimension restrictions, m - 2 < 3q - 3 (i.e., p < 2q - 1),

ntp(Sl V Sq)= ®k__x^p(Sq), and so we may write/? = E^.^T^/°/?¿) (this is a

finite sum). For k # 0, ßk is just the linking coefficient L(g, Tkg) e trp(Sq).

From Remark (3) of §1, the symmetry of the linking coefficients L(g, Tkg) and

L(Tkg, g) = L(g, T~kg) can be written as

[Tk(ioßk),i]+[ioß_k,Tki]=0;

i.e.,

[T-k(i°ß_k),t] = -T-k[Tk(ioßk),i].

Hence

(T-l)a = [ß,i] = [t°ß0,t] +1(1- T-k)[Tk(ioßk),,}.
A = l

Put T = 1 in the above formula. We obtain [i°ß0,i] = 0. Hence, since T - 1 is

injective, we get that

00

a=   £  T-k(l + T+ ••• +Tk~1)[Tk(i°ßk),i].

k = l

Putting T = 1 gives

00

L(f,g)=  Z fc{/3*o/,i].

Since ßk is stable (cf. [W]), this is equal to [/', i]°LkK'_lkßk, where ßk is (up to sign)

the iterated suspension of ßk.

4. Proofs of Theorems 4 and 8.

Proof of Theorem 8. Let X = S"+2\Sk uae". Then X is stably homotopy

equivalent to Sk U/" (cf. [C or Ha]). Now H\X) = Hn(Sk U/")= Z. Thus

there is a map X -* S1 inducing an isomorphism on //,. Hence stably, X retracts

onto the bottom cell, and hence a is stably trivial.

Proof of Theorem 4. Put K = Sm\N(S"-2), Kx = S"'\N(X), X = Sp,

where N(Sm~2), N( X) are regular neighborhoods. Consider the diagram

S1 x S"'-2      -»      51 x /i^

I \ p 1

s1 a 5""-2    -»    s1 a ^^

The map p sends S1 V 5"'~2 to the basepoint. We must show that p is homotopic to

a constant map rel Sl V S"'"2.

In fact, it suffices to show that p is homotopic to a constant by a homotopy only

relS1 and not relS1 V Sm~2. For if h, is a homotopy (relS1) of p to a constant,

then g, = hl_,\s„,-2° p2 (where p2- Sl X Sm~2 -* S"'~2 is the projection) is a

self-homotopy (relS1) of the constant map S1 X Sm~2 ^ S1 A Kx, which on Sm~2
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is inverse to ht. The combined homotopy

fh2„       f<l/2,

'     \g2t_lt    r > 1/2,

may therefore be homotoped to a homotopy (reí S1 V S"""2) of p to a constant.

Now N(Sm~2) = D2 X S"'-2 (we are assuming Sm'2 -* Sm is locally flat).

Hence dK = dN(S"'~2) = Sl X S"'~2. Suppose we show that p can be extended to

a map K -* S1 A Kx. Then since S1 -» Ä' is a homology equivalence, and S1 -* S1

A Kx is the constant map, it follows that Í -> S1 A ^ (and hence Sl X Sm~2 -*

S1 A Kx) is homotopic (reí S1) to a constant map.

Thus it suffices to extend p to a map K -* S1 A Kx. To do this, note that, since

H\K) = H1(S1 X Sm'2) = H\Sl) = Z and since Sl is a A:(Z, 1), the projection

S1 X S"'~2 -* S1 may be extended to a map <p: ^ -» S1. Moreover, since (by

hypothesis) //,( X) -* HX(K) is trivial, we may assume that <p sends N(X) to the

basepoint.

Now the map S1 X S"'~2 ^ S"'~2 a Kx extends to KC\KX^>KX (which, up to

_,1XL
homotopy, is just the inclusion). Thus the map S X Sm -» S X Kx extends to a

map K O A^ -» S1 X Kx such that the composite K n Kx -> S1 A Kx sends

37V(A') to the basepoint. We may thus extend p to all of K by sending N(X) to the

basepoint.

Acknowledgements. Theorem 4 is a homotopy theoretical version of a geomet-

ric proof for X a sphere and Sm~2 unknotted which grew out of a discussion I had

with Tim Cochran and Jerry Levine. I wish to thank W. Massey for stimulating my

interest in these questions and for the many hours of collaboration he spent with me

on this project.

References

[C] George E. Cooke, Embedding certain complexes up to homotopy type in Euclidean space, Ann. of

Math. (2) 90 (1969), 144-156.

[F] Roger Fenn, Some generalizations of the Borsuk-Ulam theorem and applications to realizing homotopy

classes by embedded spheres, Proc. Cambridge Philos. Soc. 74 (1973), 251-256.

[H] A. Haefliger, Enlacements de sphères en codimension supérieure à 2, Comment. Math. Helv. 4

(1966-67), 51-72.
[Ha] N. Habegger, On the existence and classification of homotopy embeddings of a complex into a

manifold. Thesis, Univ. of Geneva, 1981.

[Hac] D. Hacon, Embeddings of Sp in S1 X S" in the metastable range. Topology 7 (1968), 1-10.

[K] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopfs invariant, Ann. of

Math. (2) 69 (1959), 345-365.

[Ke] C. Kearton, Obstructions to embedding and isotopy in the metastable range. Math. Ann. 243 (1979),

103-113.

[T] R. Thorn. Espaces fibres en sphères et carrés de Steenrod, Ann. Sei. Ecole Norm. Sup. (4) 69 (1952),

109-182.

[W] G. Whitehead, Elements of homotopy theory, Grad. Texts in Math., Springer-Verlag, Berlin and

New York.

[Z] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501-526.

Department of Mathematics, Yale University, New Haven, Connecticut 06520

Current address: Department of Mathematics, University of California at San Diego, La Jolla,

California 92093


