## ON LINKING COEFFICIENTS

## NATHAN HABEGGER<sup>1</sup>

ABSTRACT. The possible values of linking coefficients for two component links are studied. An example of a link  $S^3 \cup S^2$  in  $S^5$  having linking coefficient in  $\pi_3(S^2)$  of Hopf invariant two is constructed. A generalization to links  $S^{m-2} \cup S^p$  in  $S^m$  is obtained in the metastable range. Applications to embeddings of two cell complexes are cited.

**0.** Introduction and statement of results. Let  $f: S^a \to S^m$ ,  $g: S^b \to S^m$  be a pair of disjoint (pl) embeddings of spheres (a two component link). The complement  $S^m \setminus g(S^b)$  has the homotopy type of  $S^{m-b-1}$  if either  $b \le m-3$  or b=m-2 and g is unknotted. (If  $b \le m-3$ , then by Zeeman [Z] g is unknotted.) In either case, f represents an element of  $\pi_a(S^{m-b-1})$  called a linking coefficient, which we denote by L(f,g).

**Problem** A. What values can L(f, g) take?

The following theorem restricts the possible values of L(f,g) (cf. Kervaire [K]).

THEOREM 1. Suppose L(f,g) and L(g,f) are both defined. Then  $\Sigma^b L(f,g) = \pm \Sigma^a L(g,f)$  in  $\pi_{a+b}(S^{m-1})$ , where  $\Sigma^b$ ,  $\Sigma^a$  are iterated suspension homomorphisms.

Note that  $\pi_{a+b}(S^{m-1})$  is a stable homotopy group. Hence,

COROLLARY 2. Suppose  $m - a \ge 3$ ,  $m - b \ge 3$ . A necessary condition for  $L \in \pi_a(S^{m-b-1})$  to be a linking coefficient is that L stably desuspends to  $\pi_b(S^{m-a-1})$ .

Using Haefliger's link classification theorem [H] in codimension greater than two, the above condition is seen to be sufficient in a range.

THEOREM 3. Suppose  $m-a \ge 3$ ,  $m-b \ge 3$  and  $2a+2b \le 3m-6$ . Suppose L stably desuspends to  $\pi_b(S^{m-a-1})$ . Then L is a linking coefficient for some link  $S^a \cup S^b$  in  $S^m$ .

W. Massey has asked: What can be said if one of the factors is allowed to have codimension 2? For links  $f: S^{m-2} \to S^m$ ,  $g: S^p \to S^m$ ,  $q = m - q - 1 \ge 2$ , we have L(f, g) defined in  $\pi_{m-2}(S^q)$ . However, because of possible knotting of the

Received by the editors October 10, 1984.

<sup>1980</sup> Mathematics Subject Classification. Primary 57Q35, 57Q45, 57R40; Secondary 54C25, 54E60, 55Q25.

Key words and phrases. Links, linking coefficients, Hopf invariant, cell complexes, embeddings, knots. <sup>1</sup>Partially supported by the National Science Foundation, grant #DMS 84-01578.

codimension 2 factor, L(g, f) need not be defined. Nevertheless, Levine (unpublished; cf. [F] for an alternative proof) has shown that Kervaire's proof can be modified to show that L(f, g) is stably trivial ( $p \ge 2$ ). A stronger result is in fact true:

THEOREM 4. Let  $f: S^{m-2} \to S^m$ ,  $g: S^p \to S^m$  be disjoint embeddings  $q = m - p - 1 \ge 2$ ,  $p \ge 2$ , Then the (single) suspension  $\Sigma L(f,g) \in \pi_{m-1}(S^{q+1})$  of L(f,g) is zero.

This necessary condition is sufficient in the metastable range:

THEOREM 5. Suppose  $p \ge 2$ ,  $q = m - p - 1 \ge 2$  and  $m - 2 \le 3q - 3$ . Suppose  $L \in \pi_{m-2}(S^q)$  satisfies  $\Sigma L = 0$ , where  $\Sigma L \in \pi_{m-1}(S^{q+1})$  is the suspension of L. Then there is a link  $S^{m-2} \cup S^p$  with linking coefficient L. Moreover,  $S^{m-2}$  may be taken to be unknotted.

REMARK. Since  $S^{m-2}$  may be taken unknotted, it follows that  $S^{m-2}$  can have any knot type. This is surprising since it had been thought that knotting phenomena might give rise to "obstructions".

Links  $S^3 \cup S^2$  are a particular case of Theorem 5. Theorems 4 and 5 can be restated as follows:

COROLLARY 6.  $\alpha \in \pi_3(S^2)$  is the linking coefficient of some  $S^3 \cup S^2$  in  $S^5$  if and only if  $\alpha$  has even Hopf invariant.

There is a close relationship between links and embeddings of two cell complexes up to homotopy type. Let  $S^{n-1} \to S^m \setminus S^p$  be an embedding. Consider  $S^m \subset D^{m+1} \subset \mathbf{R}^{m+1}$ . Then "coning off" the embedding yields an embedding up to homotopy type of  $S^q \cup_{\alpha} D^n$  in  $\mathbf{R}^{m+1}$ , where  $\alpha$  is the homotopy class of  $S^{n-1} \to S^m \setminus S^p \simeq S^q$ ,  $q = m - p - 1 \ge 2$ . Therefore, Theorem 5 yields

COROLLARY 7. Suppose  $q \ge 2$ ,  $n - q \ge 2$  and  $n \le 3q - 2$ . Let  $\alpha \in \pi_{n-1}(S^q)$  satisfy  $\Sigma \alpha = 0$ . Then  $S^q \cup_{\alpha} e^n$  embeds up to homotopy type in  $\mathbb{R}^{n+2}$ .

It seems likely that the condition  $\Sigma \alpha = 0$  is necessary. We can prove

THEOREM 8. If  $S^q \cup_{\alpha} e^n$  embeds in  $\mathbb{R}^{n+2}$ ,  $n-q \ge 2$ , then  $\alpha$  is stably trivial.

COROLLARY 9.  $S^2 \cup_{\alpha} e^4$  embeds in  $\mathbb{R}^6$  up to homotopy type if and only if  $\alpha$  has even Hopf invariant.

(That  $S^2 \cup_{\alpha} e^4$  does not embed in  $\mathbb{R}^6$ , for  $\alpha$  of odd Hopf invariant, is classical and due to Thom [T].)

This paper is organized as follows. In §1 we recall known results in codimension greater than 2. In §2 we given an explicit embedding of  $S^3 \cup S^2$  in  $S^5$  with linking coefficient of Hopf invariant 2. The more general result, Theorem 5, is proved in §3. We make use of explicit embeddings of Hacon [Hac] and calculate their linking coefficients. Finally, proofs of Theorems 4 and 8 are given in §4. They both have the same homotopy theoretical flavor.

The interested reader may refer to [Ke] for a generalization of Hacon's results.

1. Haefliger's classification sequence. The following result is due to Zeeman (cf. [Z]).

**PROPOSITION.** Suppose  $a \leq b$ . Then any  $L \in \pi_a(S^{m-b-1})$  is the linking coefficient of some link.

PROOF. If  $g: S^b \to S^m$  is the standard embedding, then  $S^m \setminus g(S^b) = S^{m-b-1} \times \mathbf{R}^{b+1}$ . Let  $\varphi: S^q \to S^{m-b-1}$  represent L, and let  $\psi: S^a \to \mathbf{R}^{b+1}$  be the standard embedding  $S^a \subset \mathbf{R}^{a+1} \subset \mathbf{R}^{b+1}$  (or any embedding). Then  $f = (\varphi, \psi): S^a \to S^{m-b-1} \times \mathbf{R}^{b+1}$  is also an embedding, and L(f, g) = L.

In [H], Haefliger reduces the classification problem for links of codimension greater than 2 to a problem in homotopy theory. As a particular case, he proves

THEOREM (HAEFLIGER [H]). Suppose  $m-a \ge 3$ ,  $m-b \ge 3$ ,  $b \le a$  and  $b+3a \le 3m-6$ . Let  $L_{a,b}^m$  denote the group of isotopy classes of pl links  $S^a \cup S^b$  in  $S^m$ . There is an exact sequence

$$L_{a,b}^{m} \xrightarrow{\lambda} \pi_{a}(S^{m-b-1}) \oplus \pi_{b}(S^{m-a-1}) \xrightarrow{\omega} \pi_{m-2}(S^{2m-a-b-3}),$$

where  $\lambda(f,g) = (L(f,g), L(g,f))$  and  $\omega$  is the iterated suspension (up to sign) on each factor.

REMARKS. (1) W. Massey has pointed out that the hypothesis  $b+3a \le 3m-6$  may be replaced by the weaker hypothesis  $2b+2a \le 3m-6$ . This is just the hypothesis necessary so that the group  $\pi_{m-2}(S^{2m-a-b-3})$  is stable. The proof is as in [H].

- (2) Theorem 3 is an immediate consequence of the exactness of this sequence and the above remark.
- (3) The homomorphism  $\omega$  expresses a symmetry in the linking coefficients, which we recall here for use later.

Let M be the boundary connected sum of  $S^a \times D^{m-a}$  and  $S^b \times D^{m-b}$ . Given an embedding of  $S^a \cup S^b$  in  $S^m$ , by Zeeman (since each component is unknotted) we may extend the embeddings to framed embeddings and hence to an embedding of M (unique up to concordance).

Let a' = m - a - 1, b' = m - b - 1. Then  $\partial M = S^a \times S^{a'} \# S^b \times S^{b'}$ . One can easily check that the inclusion  $S^{a'} \vee S^{b'} \to \overline{S^m \setminus M}$  is a homotopy equivalence. Restricting a homotopy inverse to  $\partial M$  yields a retraction  $\lambda \colon S^a \times S^{a'} \# S^b \times S^{b'} \to S^{a'} \vee S^{b'}$ .

Let  $\lambda_a$ ,  $\lambda_b$  be the homotopy classes of the maps  $\lambda|_{S^a}$ ,  $\lambda|_{S^b}$ . These are generalized linking invariants in  $\pi_*(S^{a'} \vee S^{b'})$ . Let  $i_a$  denote the homotopy class of the inclusion  $S^{a'} \to S^{a'} \vee S^{b'}$ , and let  $p_a$  denote the homotopy class of the projection  $S^{a'} \vee S^{b'} \to S^{a'}$ ; similarly for  $i_b$ ,  $p_b$ . Then  $\lambda_a$ ,  $\lambda_b$  satisfy

- (1)  $p_a \circ \lambda_a = 0$ ,  $p_b \circ \lambda_b = 0$ ,
- (2)  $p_b \circ \lambda_a = L(f, g), p_a \circ \lambda_b = L(g, f),$
- (3)  $[\lambda_a, i_a] + [\lambda_b, i_b] = 0$ , where [, ] denotes Whitehead product. Condition (3) is the desired symmetry relation.

embedding.

**2.** An example of a link of  $S^3$  and  $S^2$  in  $S^5$ . Consider  $S^2 \times \mathbb{R}^3 = S^5 \setminus S^2 \subset S^5$ . Let  $f: S^2 \vee S^2 \to S^2 \times \mathbb{R}^3$  be any embedding which up to homotopy is just the folding map  $\Lambda: S^2 \vee S^2 \to S^2$ . Suppose f extends in  $S^5$  to an embedding  $S^2 \times S^2 \to S^5$ . Some small neighborhood X of  $S^2 \vee S^2$  in  $S^2 \times S^2$  will be embedded into  $S^2 \times \mathbb{R}^3$ . The resulting embedding  $S^3 = \partial X \to X \to S^2 \times \mathbb{R}^3 = S^5 \setminus S^2$  will have Hopf invariant two (since  $\partial X \to X$  is, up to homotopy, the Whitehead product  $[i_1, i_2]: S^3 \to S^2 \vee S^2$  and  $\Lambda \circ [i_1, i_2] = [i, i]$  has Hopf invariant two). Moreover, since  $\partial X$  bounds a disk in  $S^2 \times S^2$ , this embedding is unknotted in  $S^5$ .

It is an easy matter to embed  $S^2 \vee S^2$  as above: Let  $D_1^3 \subset \mathbb{R}^3$  be a disk and  $S_1^2 = \partial D_1^3$ . The embedding  $S^2 \vee S_1^2 \subset S^2 \times S_1^2 \subset S^2 \times \mathbb{R}^3$  satisfies all the conditions above except that  $S_1^2 \to S^2 \times \mathbb{R}^3$  is of degree zero. Choose  $* \in \mathbb{R}^3$  outside of  $D_1^3$ . Define a new embedding  $S^2 \vee S_1^2 \# S^2 \times *$  (see the diagram), where # denotes the connected sum along some path joining the two spheres. This now has degree 1 on the second factor. Moreover, since  $S^2 \times *$  bounds a disk in  $S^5 \setminus S^2 \times D_1^3$ , the two embeddings are ambient isotopic in  $S^5$ . In particular, the new embedding also extends to  $S^2 \times S^2$ , as required.



REMARK. The link  $S^3 \cup S^2 \subset S^5$  may also be obtained as follows: Note that since  $f(S^3) \subset S^5$  is unknotted,  $S^5 \setminus f(S^3) = S^1 \times \mathbb{R}^4$ . Then  $g: S^2 \to S^1 \times \mathbb{R}^4$  is an embedding which, while homotopically trivial, cannot be isotopic to the trivial

In [Hac], Hacon shows that embeddings  $S^2 \hookrightarrow S^1 \times \mathbb{R}^4$  are classified up to isotopy by the following: Let  $S^1 \times \mathbb{R}^4 = \mathbb{R}^5$  be the universal cover with transformation group  $\langle T \rangle = \mathbb{Z}$ . Then if  $\tilde{g} : S^2 \to S^1 \times \mathbb{R}^4$  is any lift of  $g : S^2 \to S^1 \times \mathbb{R}^4$ , the linking numbers  $L(\tilde{g}, T^k \tilde{g}) \in \mathbb{Z}$ ,  $k \neq 0$ , are defined and nonzero for only finitely many k. The map  $\text{Emb}(S^2, S^1 \times \mathbb{R}^4) \to \bigoplus_{k=1}^{\infty} \mathbb{Z}$  is a bijection.

Follow the isotopy in the construction of the link backwards. One gets an isotopy of  $g(S^2)$  (where  $S^5 \setminus g(S^2) = S^2 \times \mathbb{R}^3$ ) to a new embedding  $g': S^2 \to S^5$  in the complement of  $S^2 \vee S_1^2$  linking each wedge factor once. Up to isotopy (since any two such are isotopic) it is precisely the connected sum of  $g(S^2)$  and  $S^2 \times 0 \subset S^2 \times D^3 \subset S^2 \times \mathbb{R}^3$ . Note that  $g(S^2)$  and  $S^2 \times 0$  link once. Since the path connecting

them travels once through  $D^3 = S^2 \times S^2 \setminus S^2 \vee S^2$ , we get

$$L(\tilde{g}', T^k \tilde{g}') = \begin{cases} 1, & k = 1, \\ 0, & k > 1. \end{cases}$$

3. Proof of Theorem 5. By Hacon [Hac], embeddings of  $S^p$  in  $S^1 \times R^{m-1} = S^m \setminus S^{m-2}$  form a group isomorphic to  $\bigoplus_{k=1}^{\infty} \pi_p(S^q)$ , q=m-p-1, valid in the metastable range 3(p+1) < 2m; i.e.,  $m-2 \le 3q-3$ . If  $\langle T \rangle = \pi_1(S^1 \times \mathbf{R}^{m-1})$  denotes the deck transformation group for the universal covering  $\mathbf{R}^m = S^1 \times \mathbf{R}^{m-1}$ , the Hacon invariants are the linking coefficients  $L(\tilde{g}, T^k \tilde{g}) \in \pi_p(S^q)$ , where  $\tilde{g}: S^p \to R^m = S^1 \times R^{m-1}$  denotes any lift of  $g: S^p \to S^1 \times \mathbf{R}^{m-1}$ . Note that this is independent of the choice of lifts.

Associate to any embedding  $g: S^p \to S^1 \times \mathbb{R}^{m-1} = S^m \setminus S^{m-2}$  a link  $(f, g): S^{m-2} \cup S^p \subset S^m$ . One obtains from this link the linking coefficient L(f, g) in  $\pi_{m-2}(S^{m-p-1})$ .

Using Hacon's isomorphism, this gives a map  $\bigoplus_{k=1}^{\infty} \pi_p(S^q) \to \pi_{m-2}(S^q)$  which can be calculated:

PROPOSITION. The above map is given by the formula

$$\bigoplus \beta_k \to [i,i] \circ \sum_{k=1}^{\infty} k \tilde{\beta}_k,$$

where  $\tilde{\beta}_k \in \pi_{m-2}(S^{2q-1})$  is (up to sign) the iterated suspension of  $\beta_k$ .

To prove Theorem 5 from the Proposition, note that under the hypothesis of the theorem,  $\pi_p(S^q)$  is a stable group. Taking  $\beta_1 = \beta$  and  $\beta_k = 0$ ,  $k \neq 1$ , we see that the right side is of the form  $[i, i] \circ \tilde{\beta}$ , with  $\tilde{\beta}$  any arbitrary element of  $\pi_{m-2}(S^{2m-2p-3})$ . Furthermore, under the hypothesis  $m-2 \leq 3q-3$ , the EHP sequence [W, pp. 548-549] is valid. It follows that any element in the kernel of the suspension homomorphism is of the form  $[i, i] \circ \tilde{\beta}$ . Thus if L is in the kernel, let  $L = [i, i] \circ \tilde{\beta}$ . Then L is the linking coefficient of the link  $S^{m-2} \cup S^p$  having Hacon invariant  $\beta_1 = \beta$ ,  $\beta_k = 0$ , k > 1.

PROOF OF THE PROPOSITION. As in §1, Remark (3), extend the embedding  $S^{m-2} \cup S^p \subset S^m$  to an embedding of the compact manifold M, boundary connected sum of  $S^{m-2} \times D^2$  and  $S^p \times D^{q+1}$ .  $\partial M = S^{m-2} \times S^1 \# S^p \times S^q$ , and the inclusion  $S^1 \vee S^q \to \overline{S^m} \setminus M$  is again a homotopy equivalence. The restriction of a homotopy inverse to  $\partial M$  yields a retraction  $\lambda \colon S^{m-2} \times S^1 \# S^p \times S^q \to S^1 \vee S^q$ .

The Hacon invariants are contained in the homotopy class of the map (denoted by  $\beta$ )  $\lambda|_{S^p}$ :  $S^p \to S^1 \vee S^q$ . The desired linking coefficient L(f,g) is obtained from the homotopy class (denoted by  $\alpha$ ) of the map  $\lambda|_{S^{m-2}}$ :  $S^{m-2} \to S^1 \vee S^q$  by composing with the projection to  $S^q$ . Furthermore,  $\alpha$  and  $\beta$  are related by the formula

$$(T-1)\alpha + [\beta, i] = 0,$$

where *i* is the homotopy class of the inclusion  $S^q \to S^1 \vee S^q$ , and  $\langle T \rangle = \pi_1(S^1 \vee S^q)$  acts on  $\pi_*(S^1 \vee S^q)$  in the usual fashion. Now since T-1 is injective, we are able to calculate  $\alpha$  from  $\beta$ .

Under the dimension restrictions,  $m-2 \le 3q-3$  (i.e., p<2q-1),  $\pi_p(S^1 \vee S^q) = \bigoplus_{k=-\infty}^{\infty} \pi_p(S^q)$ , and so we may write  $\beta = \sum_{k=-\infty}^{\infty} T^k(i \circ \beta_k)$  (this is a finite sum). For  $k \ne 0$ ,  $\beta_k$  is just the linking coefficient  $L(\tilde{g}, T^k \tilde{g}) \in \pi_p(S^q)$ .

From Remark (3) of §1, the symmetry of the linking coefficients  $L(\tilde{g}, T^k \tilde{g})$  and  $L(T^k \tilde{g}, \tilde{g}) = L(\tilde{g}, T^{-k} \tilde{g})$  can be written as

$$\left[T^{k}(i\circ\beta_{k}),i\right]+\left[i\circ\beta_{-k},T^{k}i\right]=0;$$

i.e.,

$$\left[T^{-k}(i\circ\beta_{-k}),i\right]=-T^{-k}\left[T^{k}(i\circ\beta_{k}),i\right].$$

Hence

$$(T-1)\alpha = [\beta,i] = [i \circ \beta_0,i] + \sum_{k=1}^{\infty} (1-T^{-k})[T^k(i \circ \beta_k),i].$$

Put T=1 in the above formula. We obtain  $[i \circ \beta_0, i] = 0$ . Hence, since T-1 is injective, we get that

$$\alpha = \sum_{k=1}^{\infty} T^{-k} (1 + T + \cdots + T^{k-1}) [T^k (i \circ \beta_k), i].$$

Putting T = 1 gives

$$L(f,g) = \sum_{k=1}^{\infty} k[\beta_k \circ i, i].$$

Since  $\beta_k$  is stable (cf. [W]), this is equal to  $[i, i] \circ \sum_{k=1}^{\infty} k \tilde{\beta}_k$ , where  $\tilde{\beta}_k$  is (up to sign) the iterated suspension of  $\beta_k$ .

## 4. Proofs of Theorems 4 and 8.

PROOF OF THEOREM 8. Let  $X = S^{n+2} \setminus S^k \cup_{\alpha} e^n$ . Then X is stably homotopy equivalent to  $S^k \cup_{\alpha} e^n$  (cf. [C or Ha]). Now  $H^1(X) = H_n(S^k \cup_{\alpha} e^n) = \mathbb{Z}$ . Thus there is a map  $X \to S^1$  inducing an isomorphism on  $H_1$ . Hence stably, X retracts onto the bottom cell, and hence  $\alpha$  is stably trivial.

PROOF OF THEOREM 4. Put  $K = \overline{S^m \setminus N(S^{m-2})}$ ,  $K_X = \overline{S^m \setminus N(X)}$ ,  $X = S^p$ , where  $N(S^{m-2})$ , N(X) are regular neighborhoods. Consider the diagram

$$S^{1} \times S^{m-2} \xrightarrow{1 \times L} S^{1} \times K_{X}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad .$$

$$S^{1} \wedge S^{m-2} \xrightarrow{\Sigma L} S^{1} \wedge K_{X}$$

The map  $\rho$  sends  $S^1 \vee S^{m-2}$  to the basepoint. We must show that  $\rho$  is homotopic to a constant map rel  $S^1 \vee S^{m-2}$ .

In fact, it suffices to show that  $\rho$  is homotopic to a constant by a homotopy only rel  $S^1$  and not rel  $S^1 \vee S^{m-2}$ . For if  $h_t$  is a homotopy (rel  $S^1$ ) of  $\rho$  to a constant, then  $g_t = h_{1-t}|_{S^{m-2}} \circ p_2$  (where  $p_2: S^1 \times S^{m-2} \to S^{m-2}$  is the projection) is a self-homotopy (rel  $S^1$ ) of the constant map  $S^1 \times S^{m-2} \to S^1 \wedge K_X$ , which on  $S^{m-2}$ 

is inverse to  $h_i$ . The combined homotopy

$$H_t = \begin{cases} h_{2t}, & t \leq 1/2, \\ g_{2t-1}, & t \geq 1/2, \end{cases}$$

may therefore be homotoped to a homotopy (rel  $S^1 \vee S^{m-2}$ ) of  $\rho$  to a constant.

Now  $N(S^{m-2}) = D^2 \times S^{m-2}$  (we are assuming  $S^{m-2} \to S^m$  is locally flat). Hence  $\partial K = \partial N(S^{m-2}) = S^1 \times S^{m-2}$ . Suppose we show that  $\rho$  can be extended to a map  $K \to S^1 \wedge K_X$ . Then since  $S^1 \to K$  is a homology equivalence, and  $S^1 \to S^1 \wedge K_X$  is the constant map, it follows that  $K \to S^1 \wedge K_X$  (and hence  $S^1 \times S^{m-2} \to S^1 \wedge K_X$ ) is homotopic (rel  $S^1$ ) to a constant map.

Thus it suffices to extend  $\rho$  to a map  $K \to S^1 \wedge K_X$ . To do this, note that, since  $H^1(K) = H^1(S^1 \times S^{m-2}) = H^1(S^1) = \mathbb{Z}$  and since  $S^1$  is a  $K(\mathbb{Z}, 1)$ , the projection  $S^1 \times S^{m-2} \to S^1$  may be extended to a map  $\varphi \colon K \to S^1$ . Moreover, since (by hypothesis)  $H_1(X) \to H_1(K)$  is trivial, we may assume that  $\varphi$  sends N(X) to the basepoint.

Now the map  $S^1 \times S^{m-2} \to S^{m-2} \subset K_X$  extends to  $K \cap K_X \to K_X$  (which, up to homotopy, is just the inclusion). Thus the map  $S^1 \times S^{m-2} \overset{1 \times L}{\to} S^1 \times K_X$  extends to a map  $K \cap K_X \to S^1 \times K_X$  such that the composite  $K \cap K_X \to S^1 \wedge K_X$  sends  $\partial N(X)$  to the basepoint. We may thus extend  $\rho$  to all of K by sending N(X) to the basepoint.

ACKNOWLEDGEMENTS. Theorem 4 is a homotopy theoretical version of a geometric proof for X a sphere and  $S^{m-2}$  unknotted which grew out of a discussion I had with Tim Cochran and Jerry Levine. I wish to thank W. Massey for stimulating my interest in these questions and for the many hours of collaboration he spent with me on this project.

## REFERENCES

[C] George E. Cooke, Embedding certain complexes up to homotopy type in Euclidean space, Ann. of Math. (2) 90 (1969), 144-156.

[F] Roger Fenn, Some generalizations of the Borsuk-Ulam theorem and applications to realizing homotopy classes by embedded spheres, Proc. Cambridge Philos. Soc. 74 (1973), 251-256.

[H] A. Haefliger, Enlacements de sphères en codimension supérieure à 2, Comment. Math. Helv. 4 (1966-67), 51-72.

[Ha] N. Habegger, On the existence and classification of homotopy embeddings of a complex into a manifold, Thesis, Univ. of Geneva, 1981.

[Hac] D. Hacon, Embeddings of  $S^p$  in  $S^1 \times S^q$  in the metastable range, Topology 7 (1968), 1–10.

[K] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. (2) 69 (1959), 345-365.

[Ke] C. Kearton, Obstructions to embedding and isotopy in the metastable range, Math. Ann. 243 (1979), 103-113.

[T] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. (4) 69 (1952), 109-182

[W] G. Whitehead, *Elements of homotopy theory*, Grad. Texts in Math., Springer-Verlag, Berlin and New York.

[Z] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501-526.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520

Current address: Department of Mathematics, University of California at San Diego, La Jolla, California 92093