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Fa-SET COVERS OF ANALYTIC SPACES
AND FIRST CLASS SELECTORS

R. w. HANSELL

Abstract. Let X be an analytic space (e.g., a complete metric space). We prove that

any point-countable /"„-set cover of X either has a-discrete refinement, or else there

is a compact subset of X not covered by any countable subfamily of the cover. It

follows that any point-countable /^-additive family in X has a a-discrete refine-

ment. This is used to show that any weakly immeasurable multimap, defined on X

and taking nonempty, closed and separable values in a complete metric space, has a

selector of the first Baire class.

1. Introduction. A classical theorem due to Souslin states that any analytic subset

of a complete separable metric space is either countable or contains an uncountable

compact set (and thus a copy of the Cantor set) [11, §32]. For nonseparable

complete metric spaces, this theorem remains true if we replace "countable" by

"a-discrete" (i.e., a countable union of closed discrete subsets). This was first shown

by A. H. Stone [18] for Borel subsets, and then by A. G. El'kin [1] for analytic sets.

An immediate corollary is that any subset of a complete metric space, all of whose

subsets are analytic, must be a-discrete.

A useful "set version" of this last result was obtained in [6]: Any disjoint family of

subsets of a complete metric space X with the property that the union of every

subfamily is analytic in X has a a-discrete refinement1 (equivalently, is a-discretely

decomposable2). This result was subsequently generalized to point-finite families

[13] and to certain nonmetrizable spaces [5]. (See also [2 and 3] for consistency

results along this line.) It is natural to ask whether there is a set version of El'kin's

result: Does each partition S of a complete metric space into analytic subsets have

the property that either S has a a-discrete refinement, or there is a compact set

meeting uncountably many members of S ? The answer turns out to be negative even

for C7s-set partitions (see [14 and 18, §5]). However, G. Koumoullis [14] has recently

obtained the following interesting result.
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'It is important to note that any family of subsets of a space X which is discrete relative to its union

has a a-discrete refinement relative to the space X, provided that all open subsets of X are F„-sets or X

has a a-discrete network [7, Lemma 2.2].

2 ( Ea : a s A} is a-discretely decomposable if, for each a s A, Ea = Ea „ ( n e N) and {£„.„: a e A )

is discrete for each n.
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Theorem 1.1 [14]. Let S be an F„-set partition of an analytic space X.3 Then either

ê is a-discretely decomposable, or X contains a compact set meeting uncountably many

members of ¿>.

The primary purpose of this note is to give the following extension of Theorem

1.1.

Theorem 2.1. Let S be a point-countable"' Fa-set cover of an analytic space X. Then,

either S has a o-discrete refinement, or X contains a compact subset that is not covered

by any countable subfamily of S.

Theorem 2.1 implies Theorem 1.1, since a disjoint family having a a-discrete

refinement is easily seen to be a-discretely decomposable. Note also that the two

possible properties of S in Theorem 2.1 are mutually exclusive: For if S has a

a-discrete refinement and C is any compact subset of X, then C meets at most

countably many members of the refinement, and so is covered by some countable

subfamily of e?. Further, we note that Theorem 2.1 cannot be sharpened by

replacing "a-discrete refinement" with "a-discretely decomposable": Hausdorff [12]

has shown that R is the union of a strictly decreasing sequence of F0-sets indexed

by the countable ordinals. Such a family is point-countable but could not be a-

discretely decomposable, since this would imply the existence of an uncountable

discrete subset of R. That point-countability in Theorem 2.1 cannot be omitted

follows from [17, Example 1.4].

If =SP is any collection of sets, we say that a family of sets is ^additive if the

union of each subfamily belongs to AC. In §3 we prove the following consequence of

Theorem 2.1.

Theorem 3.3. Let X be an analytic space. Then every point-countable Fa-additive

family of subsets of X has a o-discrete refinement.

In contrast to the situation with Theorem 2.1, Theorem 3.3 is believed to hold for

Borel sets of arbitrary class, although no proof is known even for Gs-additive

families. R. Pol [17] has shown that a point-countable (extended) Borel-additive

family in an analytic space has a a-discrete refinement, provided the members of the

family have weight at most S,. Theorem 3.3 lends support to the conjecture that the

weight restriction can be omitted. Under additional axioms of set theory this holds

true even for arbitrary metric spaces (see [3, §4]).

We conclude with an application of Theorem 3.3 to the study of measurable

selections by proving the following.

Theorem 4.1. Let T be a regular analytic space, X a metric space, and F: T -* X a

multimap having nonempty, separable and p-complete values, where p is a metric for

'Analytic spaces are defined in §2.

4A collection is point-countable if no point belongs to more than countably many members of the

collection.
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X. Assume that F is weakly Fa-measurable; i.e., for each open U in X,

F~l(U) = {/ G T: F(t)n U * 0}

is an Fa-set of T. Then F has a selector of the first class (i.e., there is a map f:T-*X

such that f (I) G F(t), for all t g T, andf~l(U) is an Fa-set of Tfor all open sets U of

X).

2. Analytic spaces and the proof of Theorem 2.1. By an analytic space we mean

any Hausdorff space X that is a continuous, base-a-discrete image of a complete

metric space. A map /: Z -» X is base-a-discrete [16] if to each discrete family s/ in

Z there corresponds a a-discrete family 3D in X such that f(A) is the union of some

subfamily of AS for each A in s& (SS is said to be a base for [f(A)\ A ej/)). It is

easy to see that any (Hausdorff) continuous image of a complete separable metric

space is an analytic space (discrete families are countable). Also, any analytic subset

of a complete metric space is an analytic space [9].

Proof of Theorem 2.1. We first consider the case when X has a complete metric

d. Let F denote the largest closed subset of X such that no nonempty open subset of

F is covered by countably many sets from tf. The existence of F follows from [19,

Theorem 1] where F is called the "non-locally-P kernel of X", P being the

collection of all subsets of X which are covered by countably many sets from S. If

F = 0, then by [19, Theorem 4'] X is the union of a a-discrete family of closed sets

each of which is covered by countably many sets from S. Clearly, this yields a

a-discrete refinement of ê. Assuming F # 0, we now construct a compact subset of

X that is not covered by any countable subfamily of i.

Let 5 denote the set of all finite sequences of natural numbers (including 0 ), and

define ||0|| = 0, and

n

11*11= E*/>   where 5 = (sx,...,sn) € S.
/=i

For s g S, l(s) denotes the length of s. For each seSwe now define by induction

on l(s) points xs g F and sets Es G S satisfying the following:

(i) xs G Es;

(ii) if l(r) < l(s) and xr G E g S, then xs <£ E;

(iii) if s = (t, n) for some t g S, then d(x„ xs) < l/2l|s|1.

Choose x0 g F arbitrarily. Suppose xs and  Es are known for all s g S with

l(s) < m for some m > 0. Given s = (t, n) of length m + 1, let B be the basic

neighborhood about x, of J-radius 1/2l|j", and let

ef = {E e<f: xr G E for some r with/(r) < l(s)}.

Since ef is countable and xref, ßnF-U^s is not empty, so there is some

Es G S — Ss and some point xs g fi n F n £s. Properties (i)-(iii) are clearly satis-

fied by xs and £J.
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We let Q = {xs: s g S). Property (iii) above ensures that Q is ¿/-totally bounded,

and so K = cl x Q is compact. Now, for each E g S, the interior of E D K relative

to K must be empty; otherwise, by the denseness of Q and since x(s n) converges to

xs, we would have both xs and x(sn) belonging to E, for some s and n, in

contradiction with (ii) above. Since E C\ K is also an F„-set in K, this implies that

each E n AT is of first category in K. Since AT is a Baire space, it follows that K

cannot be covered by countably many sets from S. This completes the proof in the

case when X is completely metrizable.

If X is analytic, then we can find a complete metric space Z and a continuous

surjection /: Z -» X with the property that the image of any a-discrete family in Z

has a a-discrete base (and hence refinement) relative to X. Now {f~l(E): E g S} is

a point-countable cover of Z by F„-sets, and so must either have a a-discrete

refinement, or else Z contains a compact set C not covered by countably many sets

of the form f^x(E), E g ê. But then, by the properties of /, S either has a

a-discrete refinement, or the compact set f(C) exists and is not covered by any

countable subfamily of S.    D

We remark that the above proof makes use of several techniques suggested by [14],

some of which G. Koumoullis attributes to D. H. Fremlin.5

3. Weakly discrete and extended Borel-additive families. Let S be a family of

subsets of X. Following R. Pol [17] we say that A c X is S-discrete provided, for

each a G A, there is an Fa G S satisfying Ea D A = (a); if X is a topological

space, we say that S is weakly discrete if every ¡f-discrete set is a a-discrete set in X.

Our interest in weakly discrete families stems from the following.

3.1 Lemma. If S is a point-countable weakly discrete family of subsets of a space X

and L is a Lindelof subspace of X, then L n (]AS) is covered by a countable subfamily

ofS.

Proof. Suppose L n (XJe?) is not covered by any countable subfamily of S. Then,

by induction over the countable ordinals, we can easily define a set A = {xa:

a < co,} contained in L such that, for all ß < a, if xß g E G ë, then xa G E. Then

for any Ea g ê with xa g Ea, we have A n £a = {xa}. Thus ,4 is «f-discrete, and so

A can be written as a countable union of closed discrete subsets of X. But this

implies that L has an uncountable closed discrete subset, contradicting the fact that

L is Lindelöf.    D

By the extended Borel sets of a topological space X we mean the smallest

a-algebra of subsets of X which contains the open sets and is closed to the operation

of discrete union [9]. By a Souslin set of X we mean, as usual, a subset of X

obtained by applying the Souslin operation to the closed sets of X. For an analytic

space X it can be shown that the extended Borel sets coincide with the family of all

subsets A of X such that A and X - A are Souslin sets of X (see, e.g., [10]).

51 would like to thank Professor G. Koumoullis for providing a preprint of [14].
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We now prove a slight refinement of a result due to R. Pol in the metrizable case

[17], although the proof given here is considerably less technical.

Theorem 3.2. Let X be an analytic space, and let S be an extended Borel-additive

family of subsets of X. Then ê is weakly discrete.

Proof. First assume that A' is a complete metric space. Let A c X be such that,

for each a g A, A n Ea = {a} for some Ea in S. For any nonempty subset B of A,

we have

B-An( \J Eh),

so B is a Souslin set relative to A. Thus, if we can show that A is a Souslin set in X,

then A will be an analytic metric space all of whose subsets are analytic, and hence a

a-discrete set by the theorem of El'kin. Since

A=  (JEa-  \jEan(X-{a}),
a^A a&A

we need only show that the set C = UaeA Ea n (X — {a}) is extended Borel in X.

Since X is metrizable, let U„á?„ (n g N) be an open base for X with each 38 n a

discrete family in X. For each B in U„ 38n define

EB = U {EA- a G A and B C X - {a}},

and note that

c = U U ebhb.
n    Se^,

Since {EB n B: B S atn} is a discrete family of extended Borel sets for each n, it

follows that C is extended Borel. This proves that S is weakly discrete when X is

completely metrizable.

For X an analytic space, let Z be a complete metric space, and let /: Z -> X be a

continuous, base-a-discrete surjection. It is clear that

f-\ê)={f-\E):E^S)

is an extended Borel-additive family in Z. Now let A C X and Fu be as before, and

let ZA = [za: a g ,4} be such that za g f~l(a) for each a in /I. Then ZA is

/'1(^')-discrete, and thus a a-discrete set by the above. But then A = f(ZA) is

a-discrete, since / is a base-a-discrete map.    D

Proof of Theorem 3.3. Let S be a point-countable, F„-additive family of subsets

of the analytic space X, and let Y = \J£. Then Y is an analytic space, and S is a

weakly discrete family in X by Theorem 3.2. In view of Lemma 3.1 and Theorem

2.1, it follows that S must have a refinement ¿ft that is a-discrete relative to Y. Since

Y is an F„-set in X, Ai is easily seen to have a a-discrete refinement relative to X.

D

4. Proof of Theorem 4.1. For n = 1,2,..., let aUn be a locally finite cover of A' by

open sets having p-diameter < 1/n. Since each separable subset of X can meet at

most countably many members of a locally finite family, our assumptions imply that
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[F~l(U): t/ef,) is a point-countable F0-additive cover of T, and so has a

a-discrete refinement Jt'. We may assume that Jt is the union of Jt'm (m = 1,2,... ),

where each Jt'm is a discrete family of F0-sets in T. Then Mm = LL#m is an F0-set

of T for each m, and, applying the countable reduction principle [15, p. 350], there

exists a sequence {Hm)m>, of pairwise disjoint F0-sets such that

HmczMm    and    T=  \J Hm.
m-l

(Here we have used the fact that in a regular analytic space, open sets are F0-sets, so

the above reduction property is valid.) It follows that

Jf= [M D Hm: M(=Jfm,m = 1,2,...}

is a disjoint, a-discrete, Fa-additive refinement of {F~l(U): U g <Wx}. For each

H^Jif choose some lfH^allx such that H c F_1(i/W), and let H(U) =

\J{H: UH= U) for each 1/e %. Then the family (H(U): Í/g <%x] is also a

disjoint, a-discrete, F0-additive cover of T and H(U) C F~l(U) for each t/ G ^j.

Now define the multimap Fx: T -» A' by

F,(/) = F(f) n t/    ¡ff   t <= H(U),  UeWx.

For any open V cz X, one has

Ff1(F) = U{F-1(t/n F) nH(U): U g ^},

and this is an FB-set of T as the union of a a-discrete collection of Fa-sets. Thus Fx

is weakly F0-measurable and has nonempty separable values. It follows that { Fx'l(U):

U G <%t2} is a point-countable Fa-additive cover of T, and we may apply the above

argument again to obtain a family (K(U): l/et2} that is disjoint, a-discrete,

Fa-additive, covers T, and is such that K(U)c F,_1(^) for each U g [/2. We

proceed to define F2: T -» A" by

Fi(t) - F,(i) n t/    iff    (ei((/),[/e«2,

and observe as before that F2 is weakly F0-measurable and has nonempty separable

values. In this way we generate a sequence of weakly F0-measurable multimaps Fn:

T -* X satisfying F(t) D Fx(t) 3 • • • D F„(i) D • • •, and Fn(t) is nonempty and

has p-diameter < 1/n.

By the p-completeness of the values of F, we can define a map /: T -» A" by

taking /(r) to be the unique member of D„{F„(r)}. Now, for any open U c A", we

have

00

rw = u f/íí/j,
H-l

where i/„ = (x g U: p-dist(.x, X- U)> 1/n). Thus f~\U) is an F„-set of T,

proving / is a selector for F of the first class.    D

Remark. For recent measurable selection theorems along lines similar to the

above, see [4 and 8].

We conclude with an example which shows the assumption that F has separable

values in Theorem 4.1 cannot be omitted, even when T is completely metrizable.
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Example. There exists a weakly Fa-measurable multimap F from the Baire space

B(ux) to the space co, with the discrete topology, having no extended Borel

measurable selector.

Proof. Let B(ux) = u^ with the product topology, and define, for each a < co,,

Sa= [x e B(ux): x(n) < a for all n g N}.

It is easy to check that {Sa: a < ccx} is an increasing, Fa-additive cover of B(cox) by

closed, separable subsets. Thus, defining F: B(ux) -» cox by

F(x) = [a < co,: x G Sa),

we have F~l(a) = Sa, for each a, and so F is weakly Fa-measurable. Now, if / were

an extended Borel measurable selector for F, then {/_1(a): a < co,} would be a

disjoint extended Borel-additive family in B(cox), and so a-discrete by [6, Theorem

2]. Since this family refines [Sa: a < co,}, it would follow that the latter has a

a-discrete refinement and, hence, that B(o>x) can be covered by a a-discrete

collection of separable subsets. But this would imply that ¿?(co,) is a-locally of

weight  < co,, in contradiction to a theorem of A. H. Stone [20, 2.1(7)].   D
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