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ON METABELIAN TWO-KNOT GROUPS

JONATHAN A. HILLMAN

Abstract. We show that if the commutator subgroup of a 2-knot group is abelian

but not finitely generated, then it is isomorphic to the additive group of dyadic

rationals, thus eliminating the one possibility left open in recent work of Yoshikawa.

It follows that the examples given by Cappell and Fox provide a complete list of

metabelian 2-knot groups.

In [4] we showed that if the commutator subgroup of the group of a 2-knot is

finitely generated abelian, then it must be isomorphic to Z3 or finite cyclic of odd

order. Yoshikawa [10] has shown that if the commutator subgroup is abelian but not

finitely generated then it must be isomorphic to the dyadic rationals D = Z[j] or to

D © (Z/5Z). We shall give a somewhat different argument which shows that only D

can occur. To complete the determination of the metabelian 2-knot groups we need

to know how the meridians may act by conjugation on the commutator subgroup. In

[4,5] it is shown that if the commutator subgroup is Z3 then the meridian action is

given by a matrix with positive determinant, while Färber [2] showed that if the

commutator subgroup is odd cyclic then the meridian action is inversion. It is easily

seen that (up to change of orientation) the only possible meridian action on D is

multiplication by 2. Thus the examples due to Cappell [1] for the case Z3 and to Fox

[3] for the cases Z/(2« + 1)Z and D exhaust the possible metabelian 2-knot groups.

Let K: S2 -» 5"* be a 2-knot with group G = ttx(S4\K(S2)), and let Y be the

closed 4-manifold obtained by surgery on K. (Thus Y has fundamental group G.)

Suppose that the commutator subgroup G' is abelian, but not finitely generated.

Then G' is a finite extension of D, by [6 or 10]. In particular the torsion subgroup T

of G' is finite, and so G' ~ D ffi T as an abelian group [8, p. 106]. A choice of

meridians for K determines an isomorphism Z[G/G'] * A = Z[t, t~l] and hence a

A-module structure on G'. Although T is a submodule of G', we do not know a

priori whether it is a module direct summand. For p a prime, let r be the dimension

of T/pT as a vectorspace over the prime field F . We shall use the following

injectivity property of cup product together with Milnor duality to estimate these

dimensions.

Lemma. Let A be an abelian group and F a field such that char F # 2, considered as

a trivial A-module. Then the map Hl(A; F) A Hl(A; F) -» H2(A; F) induced by cup

product is infective.
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Proof. The first three cohomology groups for a group G with coefficients in a

ring R which is trivial as a C7-module may be computed as: H°(G; R) = R,

H\G; R) = Hom(G\ R) and H2(G; R) = [F: G2 -» R\F(h, j) - F(gh, j) +

F(g, hj) - F(g, h) = 0 for all g, h, j in G}/B where B = [Ff: (g, h) ** f(h) -

f(gh) + f(g) for all g, h in G\ all functions /: G -» i?}. The cup product of two

elements /,, /2 in H1iG; R) is represented by the function sending (g, Ä) in G2 to

fi(g)f2(h) in /?.
There is a natural map fi: H\G; R) A H\G; R) ^ A2iG/G',R) (skew-sym-

metric bilinear maps from (G/C) X(G/G') to Ä) given by ¡ti(I/, A g,)(*G', yG') =

^ifiix)S¡iy) ~ fi(y)Siix))- This map is always injective if R is a field. Now

suppose zZfj A gt in HliA; F) A HliA; F) is such that L/; U g; = 0. Then there is a

function h: A ^> F such that \Zfiia)giib) = /i(a) + /i(<7) - ¿(eró) for all a, b in A

Therefore

m(L/, A g,)(a,b) = h(a) + h(b) - h(ab)-(h(b) + h(a) - h(ba))

= h(ba) - h(ab) = 0

since A is abelian. By the injectivity of ¡u, it follows that £/, A g, = 0.    D

Remark. In characteristic 2 cup product induces instead a map from the symmet-

ric product H\A; F)QH\A; F) to H2(A; F). If F = F2 the kernel of cup product

is isomorphic to the image of H1iA; Z/4Z) in HliA; F2) under reduction modulo 2.

For more general groups G the kernel of cup product may be related to the

subquotient G2/C73 of the lower central series [7,9].

Now let Y' be the infinite cyclic covering space of Y, so that tTx(Y') ~ G'. If F is a

field then H3(Y'\ F) = F and cup product: H\Y'; F) X H2(Y'; F) -^ H3(Y'; F)

is a perfect pairing, by Milnor duality. Moreover H1(G'; F) = Hl(Y'; F) and

H2(G'; F) £ H2(Y; F) (since the natural map F -» K(G', 1) is 2-connected), and

so F-dimH2iG'; F) < F-dimH^G'; F). If p is an odd prime and F = Fp then

F-dim H1iG'; F) = rp + 1 so by the lemma

C'2+l) <r, + l,

which implies that r = 0,1 or 2. Moreover r cannot be 1, for otherwise F-

dim H\G'; F) = 2 and the image of A2H\G'; F) in H2iY'; F) would be 1-di-

mensional, and so nontrivially paired with another element of HïiG'; F). But there

can be no nonzero alternating trilinear form on a 2-dimensional vectorspace.

Therefore rp = 0 or 2.

We shall next show that H2iG'\ Z) must be finite cyclic of odd order. By Hopfs

theorem it is a quotient of H2iY';Z) (even as a A-module) and by equivariant

Poincaré duality

H2(Y';Z) = Exl\(Hx(Y';Z),A) = ExtA( G7, A).

We may assume the meridians so chosen that G'/T = A/it — 2) as a A-module,

and then Ext\(G', A) = Ext\iG'/T, A) ~ A/(2t - 1), which is again isomorphic to

D as an abelian group. Now H2iG'\ Z) ® Q = H2iG'\ Q) is 0, as follows from the

LHS-spectral   sequence   for   the   extension   1-*T-*G'-*D-*1.   Therefore
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H2iG'; Z) must be cyclic of odd order, being a torsion quotient of D. (The argument

of this paragraph applies equally well if G' is a finite nonabelian extension of D.)

Now since G' is abelian, H2iG'; Z) « <?' A G', by [8, p. 334], and so (£> © F) A

(Z) © T) = (D ® T) © (T A T) is odd cyclic. (This calculation provides another

proof that //2(G';Z) is finite, when G' is abelian.) Therefore D ® T is odd cyclic

and so r < 1 for all odd p. But then we must have r = 0 for all odd p, and so T is

a 2-primary group. Since T A T must also be odd cyclic, it must be trivial and so T

is itself cyclic. But since T is a A-submodule of a knot module it must admit an

automorphism t such that í — 1 is also an automorphism, which is impossible if T is

cyclic of even order. Therefore T = 0 and so G' * D.

Remark. In subsequent work on 2-knot groups [6] the author has shown that if G

is solvable and either torsion free or constructible (e.g. if G' is nilpotent) then either

G is torsion free polycyclic of Hirsch length 4 and orientable type or G' is finite (cf.

[4]) or G is Fox's group. Moreover if G' = Z3 then the exterior of the knot is

determined up to homeomorphism by G alone.

References

1. S. E. Cappell, Superspinning and knot complements. Topology of Manifolds, Georgia 1969,

Markham, Chicago, 111., 1970, pp. 358-383.

2. M. S. Färber, Duality in an infinite cyclic covering and even-dimensional knots, Math. USSR Izv. 11

(1977), 749-781.
3. R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics,

Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167.

4. J. A. Hillman, High dimensional knot groups which are not two-knot groups. Bull. Austral. Math. Soc.

16(1977), 449-462.

5. _, Orientability, asphericity and two-knot groups, Houston J. Math. 6 (1980), 67-76.

6. _, Two-knot groups with torsion free abelian normal subgroups, preprint, Australian National

University, 1985.

7. _, The kernel of the cup product. Bull. Austral. Math. Soc. (1985). in press.

8. D. J. S. Robinson, A course in the theory of groups. Graduate Texts in Math., vol. 80, Springer-Verlag,

Berlin and New York, 1982.

9. D. Sullivan, On the intersection ring of compact three-manifolds. Topology 14 (1975), 275-277.

10. K. Yoshikawa, On 2-knot groups with abelian commutator subgroups, Proc. Amer. Math. Soc. 92

(1984), 305-310.

Department of Mathematics, Faculty of Science, Australian National University, GPO Box

4, Canberra ACT 2600, Australia

Current address: Department of Mathematics, Macquarie University, North Ryde, N.S.W. 2113,

Australia


