REMARKS ON PETTIS INTEGRABILITY

R. HUFF

ABSTRACT. Characterizations of Pettis integrability, including the Geitz-Talagrand core theorem, are derived in an easy way.

The purpose of this note is to point out how a folklore result (Proposition 1) can be made the basis for relatively easy proofs of some recent results about Pettis integrability. Our notation follows Dunford and Schwartz [1].

Let $(\Omega, \Sigma, \lambda)$ be a complete probability space, and let X be a Banach space with continuous dual X^* . A function $f: \Omega \to X$ is Dunford integrable provided the composition $T(x^*) = x^*f$ is in $L^1(\lambda)$ for every x^* in X^* . In this case, it follows (from the closed graph theorem) that $T: X^* \to L^1(\lambda)$ is a bounded linear operator. Hence, for every g in $L^{\infty}(\lambda)$, the map φ_g , defined by

$$arphi_g(x^*) = \int gT(x^*) d\lambda,$$

is in X^{**} . In particular, for each E in Σ , $\nu(E)=\int_E f\,d\lambda$, defined to equal φ_{χ_E} and called the *Dunford integral* of f over E, is an element of X^{**} .

The function $\nu: \Sigma \to X^{**}$ is not necessarily countably additive. It can be shown that ν is countably additive if and only if T is a weakly compact operator if and only if $\{x^*f: ||x^*|| \leq 1\}$ is uniformly integrable in $L^1(\lambda)$ [1, pp. 319, 485, 292]. These conditions are automatically satisfied if f has bounded range.

Let \hat{X} denote the natural image of X in X^{**} . The function f is said to be *Pettis integrable* if and only if for every E in Σ , $\nu(E)$ is in \hat{X} (equivalently, $\nu(E)$ is weak* continuous on X^*). The following proposition is essentially a reformulation of the definition.

PROPOSITION 1. A Dunford integrable function f is Pettis integrable if and only if the operator $T: X^* \to L^1(\lambda)$ is weak*-to-weak continuous.

In particular, if f is Pettis integrable then T is necessarily a weakly compact operator.

PROOF. (⇐) is clear.

 (\Rightarrow) If f is Pettis integrable, then for each simple function g in $L^{\infty}(\lambda)$, φ_g is weak* continuous on X^* . By approximation, φ_g is weak* continuous for every g in $L^{\infty}(\lambda)$. \square

Therefore, to study Pettis integrability one studies the action of T on weak* neighborhoods in X^* . If F is a finite set in X, and $\varepsilon > 0$, let

$$\mathcal{K}(F,\varepsilon) = \{x^* \in X^* : ||x^*|| \le 1 \text{ and } x^*(x) \le \varepsilon \text{ for every } x \text{ in } F\}.$$

Received by the editors March 9, 1985.

1980 Mathematics Subject Classification. Primary 28B05, 46G10; Secondary 46B99.

LEMMA 2. If f is Dunford integrable, then for all F, ε the set $T(K(F,\varepsilon))$ is closed and convex in $L^1(\lambda)$.

PROOF. Convexity is clear. Suppose g is in the closure of $T(\mathcal{K}(F,\varepsilon))$, and choose x_n^* in $\mathcal{K}(F,\varepsilon)$ with $x_n^*f \to g$ a.e. Let x^* be a weak* cluster point of $(x_n^*)_n$. Then x^* is in $\mathcal{K}(F,\varepsilon)$ and $g=x^*f$ a.e. \square

The following reformulation of Proposition 1 was derived from ideas in proofs due to M. Talagrand (see Sentilles and Wheeler [5]).

PROPOSITION 3. If f is Dunford integrable, then the following are equivalent:

- 1. f is Pettis integrable;
- 2. T is a weakly compact operator and

$$\{0\} = \bigcap \{T(\mathcal{K}(F,\varepsilon))| F \subset X, F \text{finite, and } \varepsilon > 0\}.$$

PROOF. (1) \Rightarrow (2) If f is Pettis integrable, then T is weakly compact. Suppose g is in $\bigcap_{(F,\varepsilon)} T(\mathcal{K}(F,\varepsilon))$. For each (F,ε) choose $x_{F,\varepsilon}^*$ in $\mathcal{K}(F,\varepsilon)$ so that $g=T(x_{F,\varepsilon}^*)$. Note that $(x_{F,\varepsilon}^*)_{(F,\varepsilon)}$ is naturally a net in X^* which converges weak* to 0. Hence, $g=T(x_{F,\varepsilon}^*)\to 0$.

 $(2)\Rightarrow (1)$ Let $B^*=\{x^*|\|x^*\|\leq 1\}$. Suppose a net (x^*_{α}) in $(1/2)B^*$ converges weak* to x^* . Then $(x^*_{\alpha}-x^*)$ is in B^* and for all (F,ε) it is eventually in $\mathcal{K}(F,\varepsilon)$. Let g be any weak cluster point of $(T(x^*_{\alpha}-x^*))$. Then g is in $\bigcap_{(F,\varepsilon)}T(\mathcal{K}(F,\varepsilon))$, so g=0. Thus $T(x^*_{\alpha})\to T(x^*)$ weakly in $L^1(\lambda)$. It follows that T is weak*-to-weak continuous. \square

Say that a weakly measurable function $f: \Omega \to X$ is separable-like provided there exists a separable subspace D of X such that for every x^* in X^* ,

$$x^* \chi_D f = x^* f$$
 a.e. (λ) .

(That is, as far as x^* is concerned, f takes almost all its range in D.) In particular, simple functions are separable-like. If (Ω, Σ, μ) is a separable measure space, then every Dunford integrable function is automatically separable-like.

COROLLARY 4. Suppose f is Dunford integrable and T is weakly compact. If f is separable-like, then it is Pettis integrable.

PROOF. Let (x_n) be dense in D. Let g be in $\bigcap_{(F,\varepsilon)} T(\mathcal{K}(F,\varepsilon))$. We must show that g=0 a.e.

For each n, choose x_n^* in $K(\{x_i\}_{i=1}^n, 1/n)$ so that $g = x_n^* f$ a.e. Now choose a fixed null set E so that for every n, $g = x_n^* f$ off E. Let $(x_n^*)_n$ cluster weak* at x^* . Then $g = x^* f$ off E, while $x^* = 0$ on D. Hence,

$$g = x^*f = x^*\chi_D f = 0$$
 a.e. \square

If (Ω, Σ, μ) is a perfect measure space, Geitz [3] shows that every Pettis integrable f is separable-like. Thus, the converse of the Corollary holds for perfect measure spaces.

The next corollary is obvious.

COROLLARY 5. Suppose f is Dunford integrable, T is weakly compact, and there is a sequence (f_n) of separable-like integrable functions such that for each x^* , (x^*f_n) converges a.e. to x^*f . Then f is Pettis integrable.

404 R. HUFF

If $f: \Omega \to X$, then the *core* of f over a set E in Σ is defined to be the set

$$\operatorname{cor}_E f = \bigcap \{ \overline{\operatorname{co}}(f(E \backslash N)) | N \in \Sigma, \lambda(N) = 0 \}.$$

LEMMA 6. Suppose f is weakly measurable and that

$$E \in \Sigma$$
, $\lambda(E) \neq 0 \Rightarrow \operatorname{cor}_E f \neq \emptyset$.

If x^* is X^* , then $x^*f = 0$ a.e. on Ω if and only if x^* is constantly 0 on $\operatorname{cor}_{\Omega} f$.

PROOF. (⇒) clearly.

 (\Leftarrow) If x^*f is not zero a.e., we may assume there exist E in Σ and $\alpha > 0$ such that $\lambda(E) \neq 0$ and $x^*f > \alpha$ on E. Then $\operatorname{cor}_E f \subset \{x | x^*(x) \geq \alpha\}$, and $\emptyset \neq \operatorname{cor}_E f \subset \operatorname{cor}_\Omega f$, so x^* is not constantly zero on $\operatorname{cor}_\Omega f$. \square

COROLLARY 7 (GEITZ-TALAGRAND). Suppose $f: \Omega \to X$ is Dunford integrable and T is weakly compact. Then f is Pettis integrable if and only if

(*)
$$E \in \Sigma$$
, $\lambda(E) \neq 0 \Rightarrow \operatorname{cor}_E f \neq \emptyset$.

PROOF. (\Rightarrow) If f is Pettis integrable, then by the separation theorem the integral $\int_E f \, d\lambda$ is in $\operatorname{cor}_E f$.

(\Leftarrow) Suppose (*) holds and g is in $\bigcap_{(F,\varepsilon)} T(\mathcal{K}(F,\varepsilon))$, with $g=x^*f$ for some x^* in X^* . If g is not identically zero a.e., then there exists x in $\operatorname{cor}_{\Omega} f$ with $x^*(x) \neq 0$.

For each n, choose x_n^* in $\mathcal{K}(\{x\}, 1/n)$ with $g = x_n^* f$ a.e. Choose a fixed null set E so that for every n, $g = x_n^* f$ off E. Let y^* be a weak* cluster point of (x_n^*) . Then $y^* f = g$ a.e., and $y^*(x) = 0$.

Let $z^* = x^* - y^*$. Then $z^*f = 0$ a.e. while $z^*(x) \neq 0$, contradicting the lemma.

REFERENCES

- N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, Interscience, New York, 1967.
- 2. D. M. Fremlin and M. Talagrand, A decomposition for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), 117-142.
- 3. R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
- 4. ____, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269 (1982), 535-548.
- F. D. Sentilles and R. F. Wheeler, Pettis integration via the Stonian transform, Pacific J. Math. 107 (1983), 473-496.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802