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MULTIPLE NONTRIVIAL SOLUTIONS OF RESONANT
AND NONRESONANT ASYMPTOTICALLY LINEAR PROBLEMS

SHAIR AHMAD1

ABSTRACT. We give simple conditions under which a second order semilin-

ear elliptic boundary value problem with the zero solution has at least two

nonzero solutions. Our conditions involve the change in the spectrum of the

linearization of the problem going from zero to infinity.

Let fi be a smooth bounded domain in R™ (n > 1) and g be a C1 scalar function

defined on R such that g(0) — 0. We consider the boundary value problem

(1) Au + g{u)=0    in fi,        u|dfi = 0

and investigate the existence of nonzero solutions. Let 0 < Ai < X2 < ■ ■ ■ < Xm <

Xm+i < ' • • denote the increasing sequence of eigenvalues of the linear problem

(2) Au + Xu = 0   in fi,        u|dfi = 0.

It follows from an abstract result due to Amann and Zehnder [2] (see [6] for a

simplified proof) that if

(3) f/(0)=a, lim   g{a)/a = b,
\s\—>OG

neither a nor b is an eigenvalue of problem (2), and there is some eigenvalue between

a and b, then there exists a nonzero solution of (1).

In this note we give conditions under which (1) has at least two nontrivial solu-

tions. We consider the cases b G (Xi,X2), a < Ai and the resonance case b = Ai.

Our main tools are recent theorems of Ambrosetti [4] and Hofer [7]. These the-

orems have been combined in [8] to establish existence of multiple solutions of a

nonhomogeneous problem with jumping nonlinearities. The variational approach

used to study the resonance case is similar to that first used in [1 and 10].

We remark that the subsolution-supersolution method (see [12]) can be used to

establish the existence of a positive and a negative solution if b < Ai < a.

THEOREM 1. 7/Ai < b < X2 and either a < Ai or a G (Am,Am+i) for some

m > 2, then (1) has at least two nontrivial solutions. The same is also true if

a < Ai and b G (Am, Am+i ) for some m > 1.

PROOF. Let G'(£) = g(£) for all £ G R and G(0) = 0. Let 77 denote the Sobolev
space W^^) with inner product

(4) (u,v) = / {Vu,Vv)dx,
Jn
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where ( , ) is the Rn-inner product. If /: 77 —> R is defined by

(5) f(u)=  ( (\Vu\2/2-G(u))dx,
Jq

then standard arguments [11] show that / G G2,

(6) /'(«)(«) = [ ((Vu, Vu) - g(u)v) dx
Jq

for u, v G 77, and for u,v,w G 77,

(7) /"(«)(«)(«;) = / ((Vv, Vw) - g'(u)vw) dx.
Jq

We see that weak solutions of (1) coincide with critical points of / and, by regularity

theory, weak solutions are smooth. By the Riesz-Frechet theorem, the Sobolev

imbedding theorem, (4) and (6) we can write f'(u)(v) — (u,v) — (N(u),v), where

N: H —► 77 is continuous and compact. Let T: 77 —» 77 be the compact selfadjoint

operator defined implicitly by (Tu,v) = (bu,v)o where ( , )o is the L2(fi)-inner

product. Our assumptions on g imply that

(8) \\Tu-N(u)\\/\\u\\^0

as ||u|| —* oo, where || || is the norm in 77. Since b is not an eigenvalue of problem

(2), the mapping 7 — T is invertible and consequently there exists a number 6 > 0

such that ||u - Tu\\ > 26\\u\\ for all u G 77. By (8) there exists r > 0 such that

||u - iV(u)|| > ¿>||u|| if ||u|| > r. It follows that if {un}f is a sequence in 77

such that un - N(un) —+ 0 in 77 as n —> oo, then {un}f> is bounded and hence,

by compactness of TV, some subsequence of {wn}f° converges. This shows that /

satisfies the well-known Palais-Smale condition.

Assume that the first set of conditions of the theorem holds. By l'Hôpital's rule,

G(0/£,2 ~* b/2 as |f| —* oo. Therefore, there exist constants ci,c2,di and d2 such

that Ai < c\ < c2 < X2, and for all f G R,

(9) c1¿;2/2-d1<G(0<c2f2/2 + d2.

If 0i is a normalized eigenfunction corresponding to At and Y denotes the sub-

space of 77 consisting of functions orthogonal to 4>i in L2(Q), then /n |Vj/|2 dx >

X2jny2dx for all y G Y. Hence, by (5), if y G Y, f(y) > 1/2[A2 - c2]|y|2 -

d2(measfi) > c*, where c* = -ci2(measfi) and | |rj is the L2(fi)-norm. Since

llalli2 = A! \<¡>\l, it follows from (5) and (9) that /(a<Ai) < s2/2[A1-ci]+di(measfi);
so f(s(j>\) —> -oo as |s| —» oo. Let so be so large that /(±so0i) < c* and set

vq = —sr,(f)i, v\ = sofii- Let A consist of all continuous maps a: [0,1] —> 77 such

that a(0) = v0 and q(1) =V\. If a G A, then a(t) G Y for some t G [0,1] and con-

sequently, Co = infQe^ maxte[o,i] f(a(t)) > c*. By a slight variation of the proof of

the well-known Ambrosetti-Rabinowitz mountain pass theorem (see [3, 4, 11]) we

infer the existence of uç, in 77 such that f'(ur,) = 0 and f(uo) = cr>.

If /-1(cn) = {wo} and {tto} is a nondegenerate critical point of /, i.e. if there

exists no v ^ 0 in 77 such that f"(uo)(v)(w) = 0 for all w G 77, then a recent

result of Ambrosetti [4, p. 19] shows that the Morse index of «o is 1. (This is the

maximum integer k such that the quadratic form Q(v) = f"(ur,)(v)(v) is negative

definite on some fc-dimensional subspace of 77.)   From (3) and (7) we see that
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f"(0)(v)(w) = fn((Vv,Vw) - avw)dx for v,w G 77, and therefore, since a is not

an eigenvalue of (2), 0 is a nondegenerate critical point of /.  If a < Ai, then for

f"(0)(v)(v) = \\v\\2-a\v\2>(Xl-a)\v\2>0;

so that the Morse index of 0 is 0. If a G (Am, Am+i) for some m > 2 and V denotes

the subspace of 77 spanned by the eigenfunctions corresponding to eigenvalues A^

of (2) with k < m, then f"(0)(v)(v) < (Xm - a)\v\l < 0 if v G V and v ¿ 0; thus
the Morse index of 0 is at least 2. Hence, by Ambrosetti's theorem there exists

uo,u0 G /_1(co), with uo 7^ 0 and f'(u0) = 0.

If T is the compact, selfadjoint operator defined above, then since 7 — T is

invertible, the Leray-Schauder degree d(I — T,Br,0) is defined if Br is the ball

of radius R centered at 0 in 77. If Tv = ^¡v for some v ^ 0, then for all w G 77,

Jq(i(Vv, Vw) - bvw) dx — 0. Hence, 6/7 is an eigenvalue of (2), and 7 = b/Xm for

some m. Thus, since Ai < b < X2,T has exactly one eigenvalue bigger than 1, and

it follows that d(I - T,Br,0) = -1 (see, for example, [9, p. 66]).

From (8) it follows that for 7? sufficiently large, deg(7 — N,Br,0)

= deg(7 — T,Br,0) — —1. The same type of argument used to calculate

<7(7 — T, Br, 0) shows that the Leray-Schauder index of 0 as a zero of u — N(u) is

1 if a < Ai and (-l)m if a G (Am, Am+i) for some m > 2.

If 0 and uq were the only critical points of /, then a recent result of Hofer [7]

would imply that the Leray-Schauder index of uq as a zero of u — N(u) equals —1.

But this is impossible since d(I — N,Br,0), for 72 large, is the sum of the L-S

indices of 0 and itn. This contradiction proves the first part of the theorem.

To prove the second part, we note that the condition a < Ai implies that / has

a strict local minimum at u = 0 since /'(0) = 0 and for v G 77, f"(0)(v)(v) =

\\v\\2 - a|w|o > rc|M[2, where k = 1 - a/Ai > 0. The condition b G (Am, Am+i) for

some m > 1 implies the existence of constants C3 > Ai and ¿3 such that G(f) >

!c3f2-(¿3. Therefore, from (5), we have f(s<f>i) < 5S2[Ai-C3] + c¡3(measfi) —> -00

as s —> 00. By the ordinary mountain pass theorem [3], it follows that / has a

critical point tin with /(«o) > /(0) = 0. The L-S index of 0 as a zero of u — N(u)

is 1, and the dgree of 7 — TV with respect to Br and 0 is (—l)m if 7? is sufficiently

large. If un and 0 were the only critical points of /, then, by Hofer's theorem

[7], the L-S index of un would be —1. But this would imply that for 7? large,

(-l)m = d(I — TV, Br, 0) = 1 - 1 = 0, a contradiction. This proves the result.

We indicate briefly how the methods used to prove Theorem 1 can be used to

obtain multiple nontrivial solutions of the resonance-type problem

(10) à.u + Xiu + g0(u) = 0,        u\dü,

where the function g0 is bounded. The existence of solutions of (10) when go(0) — 0

has recently been investigated by Bartolo, Benci and Fortunato in [5]. The following

theorem appears to be a new result for this type of problem.

THEOREM 2. Let go be a G1 function such that go(0 is bounded for f G

(—00,00) and go(0) = 0. If

(11) limsupg(f) < 0 < liminfg(f)
£^-00 Í—+00

and either g'0(0) < 0 or there exists m > 2 such that Xm < g'Q(0) + Ai < Am+i, then

problem (10) has at least two nontrivial solutions.



408 SHAIR AHMAD

PROOF. Let G0(f) = <7o(0 and Go(0) = 0. Let </>i be the normalized positive
eigenfunction corresponding to A i, let Y be as in the proof of Theorem 1, and

let / be as in (5) with G(£) = A,f2/2 + G0(0- Condition (11) implies that

f(s4>i) = — fnG(s(pi(x))dx —> —oo as |s| —► oo. Therefore, by Lemma 2.8 of [10]

/ satisfies P-S and / is bounded below on Y (see Remark 2.8 of [10]). If so is

chosen so that f(±so) < c*, where c* is the infimum of / on Y, and A and Co

are defined as in the proof of Theorem 1, then the same argument used there gives

the existence of ur¡ such that }'(uo) = 0 and f(ur¡) = c0. The proof of Theorem

1 shows that if g'(0) < 0, then the Morse index of 0 as a critical point of / is

0, and if Am < g'(0) + Ai < AOT+i for some m > 2, then the Morse index of

zero is m. Therefore Ambrosetti's theorem implies the existence of a critical point

uq G /_1(co) with tto ^ 0.

The proof of Theorem 1 will imply the existence of at least three critical points

of / if it can be shown that the degree of 7 — TV with respect to Br and 0 is — 1 for 72

large where TV is defined as before with g(£) = Ai f + 9o(f )• Let 7 > 0 be chosen so

that A1+-y < A2,andletg(£,i) = ff(f) + 7Í for 0 < t < 1. Since g(£,0) - Xi+g0{£)
and 0(f, l)/f -> Ai + 7 G (Ai,A2) as |f| -> 00, to show that d(I - N,Br,0) = -1
for large 72, it is sufficient to establish an a priori bound in 77 of solutions of

(12) Au + g(u, t) = 0,        u|<9fi = 0,

independent of t in [0,1]. The result then follows by the homotopy invariance of

the degree. Since (—A)-1 may be regarded as a compact mapping from LP(Q)

onto W2tP(U) D Wí^fi) C G*(fi) for p > TV, it is enough to establish an a priori

7/°°(fi) bound on solutions of (12) independent of t in [0,1]. Assuming that no such

bound exists, there exists a sequence of numbers {tn}]° in [0,1] and a corresponding

sequence of smooth functions {un}î° such that un is a solution of (12) when í =

tn and |tin|oo —* 00 as n —> 00. We may assume tn —> to G [0,1] as n —> 00.

Let vn - un/\un\oo. Since -Avn = Xivn + ~ftnvn + £to(wn)/|^n|oo is bounded in

L°°(fi) independently of n, by compactness and bootstrapping, we may assume that

{vn}]° converges in Gx(fi) to a smooth function v such that Av + (At + 7*0)^ = 0,

v\dfl = 0 and |u|oo = 1. By choice of 7 we must have to — 0 and v = c<pi for

some c ^ 0. We consider the case c > 0—the other case is treated similarly.

Since tpx is strictly positive on fi and its normal derivative is strictly negative on

¿>fi, un(x) —* 00 everywhere on fi, and un(x) > 0 everywhere on fi for n large.

Integrating <t>iAun +(p\X\un +(j>i(~itnun + go(un)) = 0 over fi, integrating the first

term twice by parts, and using A<p\ + Ai^i = 0, cpi\dïï = u„|dfi = 0, we obtain

¡q <f>i(ltnun + go(un)) dx = 0 for all n. But for n large, /n (t>i(^tnun + go(un)) dx >

/n (¡>igo(un) dx, and by Fatou's lemma and (11),

liminf /  (pi(x)go(un(x))dx > /  liminf cpi(x)go(un(x))dx > 0,

so we have a contradiction. By earlier remarks, this proves the theorem.

We note that (11) is the usual Landesman-Lazer condition sufficient for solvabil-

ity of (12) for smooth bounded go not necessarily satisfying go(0) = 0.
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