SOME SPECTRAL PROPERTIES OF THE PERTURBED POLYHARMONIC OPERATOR

DANIEL EIDUS

Abstract

We deal with the polyharmonic operator perturbed by a potential, decreasing at infinity as $|x|^{-\sigma}$. Under some conditions we obtain the absence of eigenvalues in a neighbourhood of the point $z=0$, the existence of the strong limit and the asymptotic expansion of the corresponding resolvent R_{z}, considered in weighted L^{2}-spaces, as $z \rightarrow 0$, where z is the spectral parameter.

Let us consider the operator

$$
\begin{equation*}
L=(-\Delta)^{m}+q(x) \tag{1}
\end{equation*}
$$

in the space $L^{2}\left(\mathbf{R}^{n}\right)$, where n is odd,

$$
\begin{equation*}
2 m>n, \tag{2}
\end{equation*}
$$

$\operatorname{Im} q=0, q$ is Lebesgue measurable on \mathbf{R}^{n}, a.e. on \mathbf{R}^{n},

$$
\begin{equation*}
|q| \leq c(1+|x|)^{-\sigma} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sigma>4 m-n \tag{4}
\end{equation*}
$$

and c does not depend on x. The operator L defined on the Sobolev space $H_{2 m}\left(\mathbf{R}^{n}\right)$ is selfadjoint. Let Q be the set of functions h, defined on \mathbf{R}^{n}, each of them vanishing a.e. outside a sphere depending on h. It is known [$\mathbf{3}$] that if

$$
\begin{equation*}
q \in Q \tag{5}
\end{equation*}
$$

then the resolvent kernel $G(x, y, k)$ of L, where

$$
k=z^{1 / 2 m} \in S_{m}:=\{k: k \in \mathbf{C}, 0<\arg k<\pi / m\}
$$

has a meromorphic continuation onto the whole \mathbf{C}. In the special case, where $q=0$ on \mathbf{R}^{n} and (2) is valid, the point $k=0$ is a pole of G. But if a.e. on \mathbf{R}^{n},

$$
\begin{equation*}
q \geq 0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{meas}\left\{x: x \in \mathbf{R}^{n}, q(x)>0\right\}>0 \tag{7}
\end{equation*}
$$

and (5) is valid, then $[\mathbf{1}] k=0$ is a regular point of G. We shall investigate the behaviour of R_{z} as $z \rightarrow 0$ in the case where (5) does not hold, and therefore G in general has no analytical continuation outside S_{m}. The results obtained below

[^0]may be applied to the asymptotics as $t \rightarrow \infty$ of solutions of the corresponding nonstationary problems (see e.g. [2]).

Let ϕ be the class of functions $v \in H_{2 m}^{\text {loc }}$ satisfying the following conditions as $\rho \rightarrow \infty$:

$$
\begin{equation*}
\int_{|x|=\rho}\left|D^{j} v\right|^{2} d x=O\left(\rho^{2 \kappa}\right) \tag{8}
\end{equation*}
$$

where D^{j} is any derivative of order $|j|, 0 \leq|j| \leq 2 m-1$, and

$$
\begin{equation*}
\kappa=m-|j|-1 \tag{9}
\end{equation*}
$$

Condition (U). The equation

$$
\begin{equation*}
(-\Delta)^{m} v+q(x) v=0 \tag{10}
\end{equation*}
$$

has only the trivial solution in the class ϕ.
It is known that (2), (6), (7) imply (U). Denote by N_{ε} the circle $|k|<\varepsilon$ in \mathbf{C} and set

$$
N(\varepsilon)=N_{\varepsilon} \cap S_{m}, \quad N^{+}(\varepsilon) \cup(0, \varepsilon),
$$

where $(0, \varepsilon)$ is the interval $0<k<\varepsilon$. Let L_{s}^{2} be the space of functions, φ, defined on \mathbf{R}^{n}, with the norm

$$
\|\varphi\|_{s}^{2}=\int(1+|x|)^{s}|\varphi|^{2} d x
$$

(we integrate over \mathbf{R}^{n}), and let B_{s} be the normed space of bounded operators $A: L_{s}^{2} \rightarrow L_{-s}^{2}$, where $s>0$.

THEOREM 1. Let conditions (U), (2), (3), (4) be satisfied. Then there exists $\varepsilon>0$ such that
(i) There are no eigenvalues of L in the interval $\left(-\varepsilon^{2 m}, \varepsilon^{2 m}\right)$.
(ii) For every

$$
\begin{equation*}
s=4 m-n+\delta, \tag{11}
\end{equation*}
$$

where $\delta>0$, it is possible to find a constant $c_{s}>0$ so that the inequality

$$
\begin{equation*}
\left\|R_{z}\right\|_{B_{s}} \leq c_{s} \tag{12}
\end{equation*}
$$

holds for each $k \in N(\varepsilon)$, where $z=k^{2 m}$.
Proof. Choose some function $q_{0}(x)$ continuous on \mathbf{R}^{n} and satisfying conditions (5), (6), (7), and set $L_{0}=(-\Delta)^{m}+q_{0}$. It is known [1] that the corresponding resolvent kernel $G_{0}(x, y, k)$ is continuous in some domain $\mathbf{R}^{n} \times \mathbf{R}^{n} \times N_{\varepsilon^{\prime}}, \varepsilon^{\prime}>0$, holomorphic on $N_{\varepsilon^{\prime}}$ in k and for $x, y \in \mathbf{R}^{n}, k \in N\left(\varepsilon^{\prime}\right)$,

$$
\begin{equation*}
\left|G_{0}(x, y, k)\right| \leq c(X Y)^{2 m-n} \tag{13}
\end{equation*}
$$

where $X=1+|x|, Y=1+|y|$, and c does not depend on x, y, k. Choose some $\delta>0$ such that

$$
\begin{equation*}
\delta<2(\sigma-(4 m-n)) \tag{14}
\end{equation*}
$$

Suppose (i) is not valid. Then there exists a sequence $z_{l}=k_{l}^{2 m} \rightarrow 0, k_{l} \in N^{+}\left(\varepsilon^{\prime}\right)$, and a sequence $v_{l} \in H_{2 m}\left(\mathbf{R}^{n}\right)$ so that

$$
\begin{equation*}
\left\|v_{l}\right\|_{-s}=1 \tag{15}
\end{equation*}
$$

where s is defined by (11), (14), and a.e. on \mathbf{R}^{n},

$$
\begin{equation*}
v_{l}=\int G_{0}(x, y, k) q_{1}(y) v_{l}(y) d y \tag{16}
\end{equation*}
$$

where $q_{1}=q_{0}-q$. Since (3), (11), (14), (15), (16) a.e. on \mathbf{R}^{n},

$$
\begin{equation*}
\left|v_{l}\right| \leq c X^{2 m-n} \tag{17}
\end{equation*}
$$

$l=1,2, \ldots$ Because of (13), (15), (16), (17), there exists a subsequence $v_{l_{j}}$ converging in L_{-s}^{2} to v, and a.e. on \mathbf{R}^{n},

$$
\begin{equation*}
v(x)=\int G_{0}(x, y, 0) q_{1}(y) v(y) d y \tag{18}
\end{equation*}
$$

It follows from (18) (see [1]) that $v \in \phi$. Because of (10), (U) we conclude that $v=0$ a.e. on \mathbf{R}^{n}. This contradicts (15); therefore (i) is proved. In order to prove (ii), suppose there exist some s, defined by (11) and (14), $f \in L_{s}^{2}$ and a sequence $k_{l} \rightarrow 0$, $k_{l} \in S_{m}$, so that $\left\|u_{l}\right\|_{-s} \rightarrow \infty$, where $u_{l}=R_{z_{l}} f, z_{l}=k_{l}^{2 m}$. Set $v_{l}=\left\|u_{l}\right\|_{-s}^{-1} u_{l}$. As above we obtain $v_{l_{j}} \rightarrow 0$ in L_{-s}^{2}, which contradicts (15). So the proof is complete.

Corollary. Let the conditions of Theorem 1 be satisfied. Then the strong limit ρ of $R_{z}: L_{s}^{2} \rightarrow L_{-s}^{2}$ does exist, where s is defined by (11), as $z \rightarrow 0, \operatorname{Im} z \neq 0$. Moreover, $\rho f \in \phi$ for any $f \in L_{s}^{2}$.

The next theorem immediately follows from Theorem 1 and the results of M . Murata [2, Theorems 8.7, 8.9, 8.10].

THEOREM 2. Let conditions (U), (2), (3) be satisfied, where $\sigma>4 m-n+2 l+2$, $l \geq 0$ is an integer. Then for each number $s>4 m-n+2 l+2$ there exist operators $\rho_{j} \in B_{s}, j=0,1, \ldots, l$ such that

$$
\begin{equation*}
R_{z}=\sum_{j=0}^{l} \rho_{j} k^{j}+g(k) k^{l} \tag{19}
\end{equation*}
$$

where $z=k^{2 m}, k \in S_{m}$, and $\|g(k)\|_{B_{s}} \rightarrow 0$ as $k \rightarrow 0$. Moreover if $j / 2 m$ is not an integer, then ρ_{j} is a finite rank operator.

References

1. D. Eidus, Solutions of external boundary problems for small values of the spectral parameter, Integral Equations and Operator Theory 9 (1986), 21-32.
2. M. Murata, Asymptotic expansion in time for solutions of Schrödinger-type equations, J. Funct. Anal. 49 (1982), 10-56.
3. B. R. Vainberg, On exterior elliptic problems polynomially depending on a spectral parameter, Mat. Sb. 21 (1973), 221-239.

[^0]: Received by the editors January 15, 1985.
 1980 Mathematics Subject Classification. Primary 35P05; Secondary 35J40.

