SOME SPECTRAL PROPERTIES OF THE PERTURBED POLYHARMONIC OPERATOR

DANIEL EIDUS

ABSTRACT. We deal with the polyharmonic operator perturbed by a potential, decreasing at infinity as $|x|^{-\sigma}$. Under some conditions we obtain the absence of eigenvalues in a neighbourhood of the point z=0, the existence of the strong limit and the asymptotic expansion of the corresponding resolvent R_z , considered in weighted L^2 -spaces, as $z\to 0$, where z is the spectral parameter.

Let us consider the operator

$$(1) L = (-\Delta)^m + q(x)$$

in the space $L^2(\mathbf{R}^n)$, where n is odd,

$$(2) 2m > n,$$

Im q = 0, q is Lebesgue measurable on \mathbb{R}^n , a.e. on \mathbb{R}^n ,

$$|q| \le c(1+|x|)^{-\sigma},$$

$$\sigma > 4m - n,$$

and c does not depend on x. The operator L defined on the Sobolev space $H_{2m}(\mathbf{R}^n)$ is selfadjoint. Let Q be the set of functions h, defined on \mathbf{R}^n , each of them vanishing a.e. outside a sphere depending on h. It is known [3] that if

$$(5) q \in Q$$

then the resolvent kernel G(x, y, k) of L, where

$$k = z^{1/2m} \in S_m := \{k : k \in \mathbb{C}, 0 < \arg k < \pi/m\},\$$

has a meromorphic continuation onto the whole C. In the special case, where q = 0 on \mathbb{R}^n and (2) is valid, the point k = 0 is a pole of G. But if a.e. on \mathbb{R}^n ,

$$(6) q \ge 0,$$

(7)
$$\max\{x: x \in \mathbf{R}^n, q(x) > 0\} > 0$$

and (5) is valid, then [1] k=0 is a regular point of G. We shall investigate the behaviour of R_z as $z \to 0$ in the case where (5) does not hold, and therefore G in general has no analytical continuation outside S_m . The results obtained below

Received by the editors January 15, 1985. 1980 Mathematics Subject Classification. Primary 35P05; Secondary 35J40. may be applied to the asymptotics as $t \to \infty$ of solutions of the corresponding nonstationary problems (see e.g. [2]).

Let ϕ be the class of functions $v \in H_{2m}^{\text{loc}}$ satisfying the following conditions as $\rho \to \infty$:

(8)
$$\int_{|x|=\rho} |D^j v|^2 dx = O(\rho^{2\kappa}),$$

where D^{j} is any derivative of order |j|, $0 \le |j| \le 2m-1$, and

(9)
$$\kappa = m - |j| - 1.$$

Condition (U). The equation

$$(10) \qquad (-\Delta)^m v + q(x)v = 0$$

has only the trivial solution in the class ϕ .

It is known that (2), (6), (7) imply (U). Denote by N_{ε} the circle $|k| < \varepsilon$ in C and set

$$N(\varepsilon) = N_{\varepsilon} \cap S_{m}, \qquad N^{+}(\varepsilon) \cup (0, \varepsilon),$$

where $(0, \varepsilon)$ is the interval $0 < k < \varepsilon$. Let L_s^2 be the space of functions, φ , defined on \mathbb{R}^n , with the norm

$$\|\varphi\|_s^2 = \int (1+|x|)^s |\varphi|^2 dx$$

(we integrate over \mathbb{R}^n), and let B_s be the normed space of bounded operators $A: L_s^2 \to L_{-s}^2$, where s > 0.

THEOREM 1. Let conditions (U), (2), (3), (4) be satisfied. Then there exists $\varepsilon>0$ such that

- (i) There are no eigenvalues of L in the interval $(-\varepsilon^{2m}, \varepsilon^{2m})$.
- (ii) For every

$$(11) s = 4m - n + \delta,$$

where $\delta > 0$, it is possible to find a constant $c_s > 0$ so that the inequality

holds for each $k \in N(\varepsilon)$, where $z = k^{2m}$.

PROOF. Choose some function $q_0(x)$ continuous on \mathbf{R}^n and satisfying conditions (5), (6), (7), and set $L_0 = (-\Delta)^m + q_0$. It is known [1] that the corresponding resolvent kernel $G_0(x, y, k)$ is continuous in some domain $\mathbf{R}^n \times \mathbf{R}^n \times N_{\varepsilon'}$, $\varepsilon' > 0$, holomorphic on $N_{\varepsilon'}$ in k and for $x, y \in \mathbf{R}^n$, $k \in N(\varepsilon')$,

$$(13) |G_0(x,y,k)| \le c(XY)^{2m-n},$$

where X = 1 + |x|, Y = 1 + |y|, and c does not depend on x, y, k. Choose some $\delta > 0$ such that

$$(14) \delta < 2(\sigma - (4m - n)).$$

Suppose (i) is not valid. Then there exists a sequence $z_l = k_l^{2m} \to 0$, $k_l \in N^+(\varepsilon')$, and a sequence $v_l \in H_{2m}(\mathbf{R}^n)$ so that

$$||v_l||_{-s} = 1,$$

where s is defined by (11), (14), and a.e. on \mathbb{R}^n ,

(16)
$$v_l = \int G_0(x, y, k) q_1(y) v_l(y) dy,$$

where $q_1 = q_0 - q$. Since (3), (11), (14), (15), (16) a.e. on \mathbb{R}^n ,

$$(17) |v_l| \le cX^{2m-n},$$

 $l=1,2,\ldots$ Because of (13), (15), (16), (17), there exists a subsequence v_{l_j} converging in L_{-s}^2 to v, and a.e. on \mathbb{R}^n ,

(18)
$$v(x) = \int G_0(x, y, 0) q_1(y) v(y) dy.$$

It follows from (18) (see [1]) that $v \in \phi$. Because of (10), (U) we conclude that v = 0 a.e. on \mathbb{R}^n . This contradicts (15); therefore (i) is proved. In order to prove (ii), suppose there exist some s, defined by (11) and (14), $f \in L_s^2$ and a sequence $k_l \to 0$, $k_l \in S_m$, so that $||u_l||_{-s} \to \infty$, where $u_l = R_{z_l}f$, $z_l = k_l^{2m}$. Set $v_l = ||u_l||_{-s}^{-1}u_l$. As above we obtain $v_{l_s} \to 0$ in L_{-s}^2 , which contradicts (15). So the proof is complete.

COROLLARY. Let the conditions of Theorem 1 be satisfied. Then the strong limit ρ of R_z : $L_s^2 \to L_{-s}^2$ does exist, where s is defined by (11), as $z \to 0$, Im $z \neq 0$. Moreover, $\rho f \in \phi$ for any $f \in L_s^2$.

The next theorem immediately follows from Theorem 1 and the results of M. Murata [2, Theorems 8.7, 8.9, 8.10].

THEOREM 2. Let conditions (U), (2), (3) be satisfied, where $\sigma > 4m-n+2l+2$, $l \ge 0$ is an integer. Then for each number s > 4m-n+2l+2 there exist operators $\rho_j \in B_s$, $j = 0, 1, \ldots, l$ such that

(19)
$$R_{z} = \sum_{j=0}^{l} \rho_{j} k^{j} + g(k) k^{l},$$

where $z = k^{2m}$, $k \in S_m$, and $||g(k)||_{B_s} \to 0$ as $k \to 0$. Moreover if j/2m is not an integer, then ρ_j is a finite rank operator.

REFERENCES

- 1. D. Eidus, Solutions of external boundary problems for small values of the spectral parameter, Integral Equations and Operator Theory 9 (1986), 21-32.
- M. Murata, Asymptotic expansion in time for solutions of Schrödinger-type equations, J. Funct. Anal. 49 (1982), 10-56.
- 3. B. R. Vainberg, On exterior elliptic problems polynomially depending on a spectral parameter, Mat. Sb. 21 (1973), 221-239.

SCHOOL OF MATHEMATICAL SCIENCES, TEL-AVIV UNIVERSITY, RAMAT-AVIV, ISRAEL