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ADDITIVITY OF JORDAN*-MAPS ON AVT-ALGEBRAS

JÔSUKE HAKEDA

ABSTRACT.  Let M and N be AW'-algebras and (j> be a Jordan*-map from

M to N which satisfies

(1) <f>(x o y) = <¡>(x) o 4>(y) for all x and y in M,

(2) <p(x*) = r>(z)* for ail x € M, and

(3) <f> is bijective, where xoy = (1/2)(iy + j/i).

If M has no abelian direct summand and a Jordan*-map <p ¡s uniformly

continuous on every abelian C*-subalgebra of M, then we can conclude that

<t> is additive. Moreover, <j> is the sum of <pi (i = 1,2,3,4) such that tj>\ is

a linear "-ring isomorphism, 4>2 is a linear "-ring anti-isomorphism, d>3 is a

conjugate linear "-ring anti-isomorphism and <p4 is a conjugate linear '-ring

isomorphism.

1. Preliminaries. The special Jordan product (resp. the special Jordan triple

product) is defined by z o y — (l/2)(xy + yx) (resp. {x, y, z} — (l/2)(xyz + zyx)).

DEFINITION 1.1. Let M and N be AW*-algebras, and let 0 be a map from M
to TV. If 0 satisfies the following conditions (i)-(iii), then 0 is called a Jordan*-map.

(i) <f>(x o y) = <p(x) o <p(y) for x and y of M,

(ii) (j>(x*) = 0(x)* for x G M, and

(iii) 0 is bijective.

Throughout this paper, we always assume that M and TV are AW-algebras and

0 is a Jordan*-map from M to TV.

LEMMA 1.2.   Let e and f be projections.  Then

(i) ef — 0 if and only if e o / = 0, and

(ii) e = ef if and only if e = eo f.

PROOF, (i) If e/ = 0, then e o / = 0 is obvious. Suppose e o / = 0. Since

ef = -fe, ef = (ef)f = (-/e)/ = (-/e)e/ = (e/)2 = e(/e)/ = e(-ef)f = -ef.
So e/ = 0. (ii) By the assertion (i), we have e(l-/) = 0 if and only if eo(l-f) = 0.

Hence e = ef if and only if e = e o /.

COROLLARY 1.3. </>|Mp ¿s a lattice isomorphism between the lattice Mp of pro-

jections of M and the lattice Np of projections of TV and preserves the orthogonality.

COROLLARY  1.4.   (i) <p(0) = 0, 0(1) = 1,

(ii) If {ef.i = 1,2, ...,n} C Mp is an orthogonal family, then 4>(J2iaiei) =
J2i 4>{aiei) for {ai: ¿=l|2,...,n}cC (where C is the complex numbers), and

(iii) If e < f, then <p(f — e) = (p(f) — 0(e) (in particular 0(1 — e) = 1 — 0(e)).
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PROOF. The assertions (i) and (iii) are obvious. If {ef.i = 1,2, ...,n} C Mp

is an orthogonal family, then {0(e¿): i = 1,2,..., n} C Np is an orthogonal family.

Put x = Yli aiei- Then

(x) = 0(x) O      V/ eJ       = fiW ° ̂       V eJ  j   = ^X) '

LEMMA 1.5.   T/ie following assertions (i) and (ii) /io/d.

(i) 0(-z) = -z /or every x e M.

(ii) TViere exz'sis a unique central projection en o/M suc/z í/zaí 0(¿ • 1) = ¿0(en) —

¿0(1-eo) (i2 = -l).

PROOF, (i) Put ci = 0-x((l/2)(l + 0(-l)))- Then

0(-ei) = 0(-l) ° 0(ei) = 0(-l) o ((1/2)(1 + 0(-l)))

= (l/2)(0(-l) + 0(-l) o 0(-l)) = 0(ei).

Since 0 is bijective, we get —e\ = ei and so ei = 0. Therefore 0( — 1) = —1 and

0(-z) - 0(-l) o 0(x) = -0(x) follow for ail x G M.

(ii) Next, we shall show that 0(z • 1) is a central element of TV.

0(x) = 0(-((M)ox)o(M))

= -(l/2)0(z-l)0(x)0(z-l) + (l/2)0(x)

for every x G M. Hence 0(z) = -<p(i ■ l)0(x)0(¿ ■ 1) and so <p(i ■ l)0(z) =

-cp(i ■ l)24>(x)(p(i ■ 1) = 0(z)0(¿ • 1). Therefore 0(¿ • 1) is a central element of

TV.

Put e0 = 0_1((1/2)(1 - i(p(i • 1))). Then 0(eo) = (1/2)(1 - i<f>(i ■ 1)) is a central
projection of TV. Since

0(eo°/)=0(eo)o0(/) = 0(eo)0(/)

= 0(eo)A0(/)=0(enA/)

for all / G Mp,

0 = e0 o / - e0 A / = e0 o (/ - e0 A /) = e0(f - e0 A /)

by Lemma 1.2 (i.e. en/ = eo A / G Mp). Hence, en commutes with /, so en is a

central projection of M and

0(¿ • 1) = ¿0(eo) - i(l - 0(eo)) = i<j>(e0) - ¿0(1 - e0).

Finally, we shall show that eo is unique. Suppose <p(i ■ 1) = if — i(\ - f) for some

projection / in TV. Then if = (p(i • 1)/ = ¿0(en)/ - ¿0(1 - eo)/.

Since if - i(p(e0)f = -¿(1 - 0(eo))/, we get (1 - 0(eo))/ = 0 and so / < 0(eo).

Therefore / = 0(eo) by the symmetry of 0(eo) and /.
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LEMMA 1.6. 0(exe) = 0(e)0(x)0(e) holds for any projection e in M and any

x in M.

PROOF. Since 0(2e - 1) = 0(e) - 0(1 - e) = 20(e) - 1,

0(exe) = 0(((2e - 1) o x) o e) = (0(2e - 1) o 0(z)) o 0(e)

= ((20(e) - 1) o 0(x)) o 0(e) = 0(e)0(x)0(e).

2. Aiy*-algebra which has an n x n (n > 2) matrix unit. Throughout this

paper, we suppose that M has an n x n (n > 2) matrix unit.

LEMMA 2.1. (i) 0|C • 1 is additive, (ii) For every x G M, (p(px) — p<f>(x) holds

for all rational p.

PROOF. Let {víj} be the matrix unit of M. Put e = va, v = «¡j (i ^ j),

p = (l/2)(e + v*)(e + v) and o = (l/2)(e — v*)(e — v). Since p and q are orthogonal

projections in M, we have

0((a + ß)e) = <p(e(2ap + 2ßq)e) = 0(e)0(2ap + 2ßq)<p(e)

= 0(e)(0(2ap) + 0(2/3a))0(e) = 0(ae) + 0(/?e)

by Lemma 1.6 and Corollary 1.4. So our assertion (i) follows. Let n be an arbitrary

integer and m be a natural number. Then, for every z G M,

n<p(x) = 0(n • 1) o 0(x) = 0(nx) = <p(m((n/m)x))

= 0(m • 1) o 0((n/m)x) = m<p((n/m)x)

follows. So we have assertion (ii).

COROLLARY 2.2. Let e and f be orthogonal projections ofM. Then 0({e, x, /})

= {cP(e),<p(x),<p(f)} holds.

PROOF. Since 2(e o x) o / = {e, x, /} and 0(e)0(/) = 0 (Lemma 1.2), we have

0({e, x, /}) = 0(2(e ox)of) = 2(0(e) o 0(x)) o 0(/)

= {0(e),0(x),0(/)}.

LEMMA 2.3.   0(A • 1) = A • 1 holds for all X G R (where R is the real numbers).

PROOF. Since 0|C • 1 is additive, 4>(p ■ 1) = p • 1 for every rational number p.

Let [Aj be the integral part of A G R. Then we have

0 < 0(A • 1) < 0([1/A]"1 ■ 1) < [I/A]"1 • 1    for all A G (0,1).

Since 0(—1) = —1, the map A >-+ 0(A • 1) is continuous at 0.  Hence, the map is

continuous on R.

Therefore we get 0(A • 1) = A • 1 for all A G R.

LEMMA 2.4. There exists a unique central projection eo of M such that

0(q • 1) = Q0(eo) + 00(1 - eo) for any a G C.

PROOF. For every X,p G R,

0((A + ip) ■ 1) = 0(A ■ 1) + <t>(i ■ l)0(/x • 1)

= A • 1 + (¿0(eo) - ¿0(1 - e0))(p ■ 1)

= (A + ip)(p(e0) + (X - ¿/x)0(l - e0)       (i2 = -1)

by Lemma 2.1 and Lemma 1.5.
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LEMMA 2.5.   Let a = J2i a¿e¿ where a¿ (¿ = 1,2,..., n) are in C and e¿ (i =

1,2,..., n) are orthogonal projections such that J^¿ e¿ = 1.  Then

4>(axa) = <p(a)4>(x)<p(a)    for all x G M.

PROOF. Since £¿0(e¿) = 1 (Corollary 1.4),

(p(axa) = I ̂ 0(e,) J <p(axa) I ̂ 0(e,) J

= ^2 0(e¿)0(axa)0(e¿) + 2 ]T]{0(e,), 0(axa), 0(ey)}
¿ i<j

= /J 0(e¿axae¿) + 2 V_^ 0({e¿, aza, e^})
i i<j

-J]0(at-l)20(eî)0(x)0(ei)

+ 2^0(o, • l)0(Qj • l){0(et),0(z),0(ei)}
i<j

= 0(a)0(x)0(a)

by Lemma 1.6 and Corollary 2.2.

3. Structure of Jordan*-maps. In this section we assume that 0 satisfies the

following condition:

(iv) 0 is uniformly continuous on every abelian C*-algebra of M.

LEMMA 3.1.   If h G M is selfadjoint, then (p\C*(h, 1) is additive where C*(h, 1)
is the C* -subalgebra which is generated by h and 1.

PROOF.  Let h = Ja,h-, Xde\ be the spectral decomposition of h, where a(h) is

the spectrum of h.

For any x and y in C*(h, 1), there exist / and g in C(R) (C(R) is the C*-algebra

of the complex-valued continuous functions on R) such that

x
'a(h)

and

So we have

/      /(A)deA=lim^/(AJ)eJ
J"(h) j

y=f      g(X)dex=\imy2g(XJ)eJ.
J<r(h) ¿

0(x + y) = lim J] 0((/(A,) + g(Xj)) • l)0(e,)
j

= lim£(0(/(A,)-l) + 0(O(A,)-l))0(e,)

j

= 0(z) + <j>(y)

by the condition (iv), Corollary 1.4(h) and Lemma 2.1.
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LEMMA 3.2.   Let u and v be unitaries in M. If u is self adjoint, then we have

0(n + v) = 4>(u) + (p(v).

PROOF. Put e = (1/2)(1 + u) and w = e + ¿(1 - e) (¿2 = -1). Then e is a

projection in M and w is a unitary in M such that w2 = u. Since w*vw* is a

unitary in M, by the spectral theory, there exists a selfadjoint element h in M such

that w*vw* — elh.

The map / G C(a(h)) — C(R)|<r(/i) *-* f(h) G C*(h, 1) is a surjective isometric

'-isomorphism from C(a(h)) to C*(h, 1). So

Ah X>7*)fc/fc!)
fc=0

sup ,tA

fc=0

((iX)k/k\] :Xea(h) > -+0    (as n oo

Hence w*nt(;* G C*(h, 1) C M.

Thus it follows that 0(1 + w*vw ■ 0(1) + 0(tt;*nu;*) by Lemma 3.1. So we get

0(t¿ + v) — <p(w(\ + w*vw*)w) = 4>(w)(p(l + w*vw*)(p(w)

= 0(tu)(0(l) + cp(w*vw*))<p(w)

— <p(u) + <p(v)    by Lemma 2.5.

For some pair of projections e and / in M, we write e ~ / (resp. e < /) if there

exists a partial isometry v m M such that vv* — e and v*v = / (resp. v*v < /).

LEMMA 3.3. Let h be a nonzero selfadjoint element in M, x be a nonzero

element in M and e be a projection in M such that e < 1 — e.  Then

<¡>(ehe + eze) = cp(ehe) + <p(exe).

PROOF. First of all, we shall note that for any z G M with ||z|| < 1, there

exists a unitary u such that eze = ene. In particular, when z is selfadjoint, u also

is selfadjoint. In fact, let v be a partial isometry in M such that vv* = e and

v*v < 1 — e. If we put u to be

y + (e - yy*){l/2)v + v*(e- y*y){l/2) - vy*v* + g

where y = exe and g = 1 — (e + v*v), u satisfies all the requirements [2].

If we put f(x,y) = \\x\\ + \\y\\, hi = ~f(h,x)~1h and x\ — ̂ (h,x)~lx, then there

exist unitaries u and v in M such that eh\e = eue, exie = ene and n is selfadjoint.

And it follows that

(p(ehe + exe) = i(h, x)0(e(n + v)e) = ^(h, z)0(e)0(n + n)0(e)

= 7(/i, z)0(e)(0(n) + 0(ti))0(e) = <f>(ehe) + <p(exe)

by Lemmas 1.6 and 3.2.

LEMMA 3.4. Suppose e is a projection in M such that e < 1 - e. Then <p\eMe

is additive.

PROOF.  Take arbitrary x and y in M and put x = h + ik (i2 =

and k are selfadjoint.

T) where h
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Suppose h, k and y are nonzero. Then

0(eze + eye) = <p(ehe) + <j>(e(ik + y)e)

= <p(ehe) + 4>(i ■ \)(<p(eke) + (p(-ieye))

= 4>(ehe + e(ik)e) + (p(eye)

= 0(eze) + 0(eye)

by Lemma 3.3. When h — 0, k — 0 or y = 0, the above equalities also hold.

LEMMA 3.5. Suppose e and f are projections in M such that e ~ / < 1 — e.

Then for any selfadjoint element h in M with \\h\\ < 1, there exists a selfadjoint

unitary u in M such that {e, h, /} = {e, u, /}.

PROOF. Put u to be

u = a + a* + (e - aa*)^ - (f - a*a)^'2^ + g

where a = ehf and g = 1 - (e + /). Then u satisfies all the requirements.

LEMMA 3.6. Let h and k be selfadjoint elements in M with \\h\\ < 1 and

\\k\\ < 1 and let a G C with \a\ — 1. Suppose e and f are orthogonal equivalent

projections in M, then we have

0({e, h, /} + a{e, k, /}) = 0({e, h, /}) + 0(a{e, k, /}).

PROOF. Put hi = ^(h,k)~xh and fci = i(h,k)~1k. Then there exist selfadjoint

unitaries n and v such that {e,hi,f} = {e,n,/} and {e,fci,/} = {e,v,/}, and it

follows that

0({e, h, /} + a{e, k, /}) = -y(h, fc)0({e, u + av, /})

= 7(M){0(e),0(n + tw),0(/)}

= 1(h,k){4>(e),cp(u) + <p(av),4>(f)}

= 0({e,/i,/}) + 0(Q{e,fc,/})

by Lemmas 3.5 and 3.2.

Put x = hi + iki, y = h2 + ik2 (i2 = —1) where hj, kj (j = 1,2) are selfadjoint

elements in M. Then Lemma 3.6 leads to the following

COROLLARY 3.7. Let e and f be orthogonal equivalent projections in M. Then

0|{e, M, /} is additive where {e, M, /} = {{e,z, /}: z G M}.

THEOREM 3.8. Let M and TV be AW*-algebras and let <p be a Jordan*-map

from M to TV. Suppose that M has no abelian direct summand and 0 is uniformly

continuous on each abelian C* -subalgebra of M.  Then <p is additive.

PROOF. Let {p{\ be a family of central orthogonal projections such that \J\ pi —

1 where Mpi has no finite type 7 direct summand and Mn¿ (¿ > 2) is homogeneous

type Ini for some natural number nt. Then 0|Mpt is a Jordan*-map from Mpi

to N(p(pi). We can identify x with 0jXp¿ (C*-sum) and 0(x) with 0j0(x)0(n¿).
Therefore it is sufficient to prove about Mpl for every p¿, and we may assume that
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M has an n x n (n > 2) matrix unit.   Let {e¿:¿ = 1,2,... ,n} be the family of

diagonal projections of the matrix unit of M. Since J2i <rKe¿) = 1> we nave

0(z) = (X>(e0j 0(x) Q>(e¿)j

= £ 0(et)0(x)0(eî) + 2 £{0(et), 0(x), 0(e, )}
i i<j

= ^0(e¿xeí) + 2^0({e¿,z,eJ}).

i i<j

Since 0|e¿Me¿ and 0|{e¿,M,e¡} are additive, 0 is additive.

The next lemma is due to R. V. Kadison [4]. He proved it in the case of

von Neumann algebras. However, his proof holds in the case of AW '-algebras

with a slight modification of terminologies.

LEMMA 3.9 [4, THEOREM 10]. Let M (resp. TV) be an AW*-algebra (resp.
C* -algebra) and let <p be a C*-isomorphism from M to N. Then there exists a cen-

tral projection /o in M such that(j>\Mfo (resp. <p\M(l — fo)) is a * -ring isomorphism

(resp. *-ring anti-isomorphism).

THEOREM 3.10. Keep the assumptions on M, TV and 0 as in Theorem 3.8.

There exist four central projections t\, e2, e^, e4 in M such that 0 = 0i©02©03©04

where (pi — 4>\Mei (i = 1,2,3,4). Then 0i is a linear *-ring isomorphism, <f>2 is

a linear *-ring anti-isomorphism, 03 is a conjugate linear *-ring isomorphism and

04 is a conjugate linear anti-isomorphism.

PROOF. By Theorem 3.8 and Lemma 2.4, there exists a unique central projection

eo in M such that 0|Meo is a C*-isomorphism of Meo onto TV0(eo) and 0|M(l-eo)

is a conjugate linear map from M(\ - eo) onto TV0(1 - eo) which preserves

'-operation and special Jordan product. Put xj)(x) — <f>(xer¡) + (0(z(l - eo)))*.

Then ip is a C*-isomorphism between M and TV. So there exists a central projec-

tion /o in M such that ip\Mfo (resp. tf>\M(l - fo)) is a linear *-ring isomorphism

(resp. linear *-ring anti-isomorphism).

Therefore, we put ei = eo/o, e2 = e0(l - fo), es = (1 - eo)(l - fo) and e4 =

(1 — eo)/oi then ei, e2, e$ and e4 satisfy all the requirements.

REMARK. There is an example where the projections ej., e2, e$ and e4 in Theo-

rem 3.10 are all nontrivial. In fact, let M = TV = B(772)©J3(772)©B(772)©B(772)
where H2 is the 2-dimensional Hubert space and x = (x¿¿) G B(H2). Let 0i(x) = x,

02(x) = t{xij) (transpose of z), 03(z) = (x¿y), 0(z) = z* and 0 = 0J=1 4>j- Put

d — 0y=1 Sij -1 (i = 1,2,3,4) where ¿\, = 1 if i = j and 8%j = 0 if not (Kronecker's

8). Then 0 is a Jordan*-map from M to M, and all e¿ (¿ = 1,2,3,4) are nontrivial,

satisfying the requirements of Theorem 3.10.

4. Conjectures.

CONJECTURE 4.1 (S. SARA!). Theorems 3.8 and 3.10 hold without any

hypothesis of continuity.

CONJECTURE 4.2 (K. SaitÔ). Versions of those theorems hold among JBW-

algebras.

Finally, the author would like to thank the referee for his comments.
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