A SINGULAR INTEGRAL

JAVAD NAMAZI¹

ABSTRACT. In this paper we show that if $K(x) = \Omega(x)/|x|^n$ is a Calderón-Zygmund kernel, where $\Omega \in L^q(S^{n-1})$ for some $1 < q \le \infty$, and b is a radial bounded function, then b(x)K(x) is the kernel of a convolution operator which is bounded on $L^p(\mathbb{R}^n)$ for $1 and <math>n \ge 2$.

This paper is related to boundedness properties of a variation of Calderón-Zygmund operators.

Let $H(x) = b(|x|)\Omega(x)/|x|^n$ be a kernel, where $\int_{S^{n-1}} \Omega(x) d\sigma(x') = 0$, $\Omega(\lambda x) = \Omega(x)$ for $x \in \mathbb{R}^n$, $\lambda > 0$, and b is radial. Define

(1)
$$f(x) = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} H(y) f(x-y) \, dy = \text{P.V. } H * f(x).$$

If $b \equiv 1$ and $\Omega \in L^q(S^{n-1})$ for some q > 1, then T is a Calderón-Zygmund operator which is bounded on $L^p(\mathbb{R}^n)$ for $1 and <math>n \ge 1$; see [4].

In [1] R. Fefferman showed that if Ω satisfies a Lipschitz condition and b is bounded, then T is bounded on $L^p(\mathbb{R}^n)$, $1 , <math>n \ge 2$. This is not true when n = 1; for instance, if $H(x) = \sin(|x|)/x$, then its Fourier transform $\hat{H}(\xi)$ is unbounded, indicating that T cannot be bounded on $L^2(\mathbb{R}^1)$. It turns out that the smoothness condition on Ω can be relaxed a great deal.

THEOREM. If $\Omega \in L^q(S^{n-1})$ for some $1 < q \le \infty$, and $b(|x|) \in L^{\infty}$, then T is bounded on $L^p(\mathbb{R}^n)$ for $1 and <math>n \ge 2$.

PROOF. First we show that the Fourier transform of H is bounded; thereby T is bounded on $L^2(\mathbb{R}^n)$. Using polar coordinates and letting $x = \rho x'$, $\rho = |x|$, we get

(2)
$$\hat{H}(\xi) = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{b(|x|)}{|x|^n} \Omega(x) e^{-ix \cdot \xi} dx$$
$$= \lim_{\varepsilon \to 0} \int_{\varepsilon < \rho < 1/\varepsilon} \frac{b(\rho)}{\rho} d\rho \left(\int_{S^{n-1}} \Omega(x') e^{i\rho x' \cdot \xi} d\sigma(x') \right).$$

By a change of variable $r = \rho |\xi|$, (2) becomes

(3)
$$\hat{H}(\xi) = \lim_{\varepsilon \to 0} \int_{\varepsilon|\xi|}^{|\xi|/\varepsilon} \frac{b(r/|\xi|)}{r} dr \left(\int_{S^{n-1}} \Omega(x') e^{-irx' \cdot \xi'} d\sigma(x') \right)$$
$$= \lim_{\varepsilon \to 0} \int_{\varepsilon|\xi|}^{|\xi|/\varepsilon} \frac{b(r/|\xi|)}{r} g(r,\xi') dr$$

Received by the editors March 19, 1985.

1980 Mathematics Subject Classification. Primary 42B20.

©1986 American Mathematical Society 0002-9939/86 \$1.00 + \$.25 per page

Key words and phrases. Calderón-Zygmund kernels.

¹This work is part of the author's dissertation completed at Indiana University under the supervision of Alberto Torchinsky.

where

$$g(r,\xi') = \int_{S^{n-1}} \Omega(x') e^{-irx'\cdot\xi'} \, d\sigma(x'), \qquad |\xi'| = 1.$$

Now if

(4)
$$\sup_{|\xi'|=1} \|g(\cdot,\xi')\|_{L^p(1,\infty)} \le A$$

for some $1 and a constant A, then we claim that <math>\hat{H}(\xi)$ is bounded. To prove the claim, first we observe that

$$|g(r,\xi')| = \left| \int_{S^{n-1}} \Omega(x') e^{-irx'\cdot\xi'} d\sigma(x') \right|$$
$$= \left| \int_{S^{n-1}} \Omega(x') (e^{-irx'\cdot\xi'} - 1) d\sigma(x') \right|$$
$$\leq 2r \|\Omega\|_{L^1(S^{n-1})} = cr$$

by the mean value theorem. Using this and Hölder's inequality, we see that

$$\begin{split} \int_0^\infty \left| \frac{b(r/|\xi|)}{r} g(r,\xi') \right| \, dr &\leq \|b\|_\infty \int_0^\infty \frac{|g(r,\xi')|}{r} \, dr \\ &\leq \|b\|_\infty \left(\int_0^1 \frac{cr}{r} \, dr + \|g(\cdot,\xi')\|_{L^p(1,\infty)} \cdot \left\| \frac{1}{r} \right\|_{L^{p'}(1,\infty)} \right) \\ &\leq \|b\|_\infty (c+A\|1/r\|_{L^{p'}(1,\infty)}) \leq c, \end{split}$$

where 1/p' = 1 - 1/p. Hence, by Lebesgue's dominated convergence theorem, the limit in (3) exists and $|\hat{H}(\xi)| \leq c$.

Now let us see when condition (4) may hold. Let ρ be a rotation such that $\rho(\xi') = (1, 0, 0, \dots, 0)$. In the integral of $g(r, \xi')$ make the change of variable $x' \to \rho^{-1}x'$, and let $\Omega^{\rho}(x') = \Omega(\rho^{-1}x')$. Then

$$g(r,\xi') = \int_{S^{n-1}} \Omega(x') e^{-irx'\cdot\xi'} \, d\sigma(x') = \int_{S^{n-1}} \Omega^{\rho}(x') e^{-ir(\rho^{-1}x')\cdot\xi'} \, d\sigma(x')$$
$$= \int_{S^{n-1}} \Omega^{\rho}(x') e^{-irx'\cdot\rho\xi'} = \int_{S^{n-1}} \Omega^{\rho}(x') e^{-irx'_1} \, d\sigma(x'),$$

where $x' = (x'_1, x'_2, \dots, x'_n) = (x'_1, x'')$. Taking $x'_1 = \cos \theta$, we can write the last integral as

$$g(r,\xi') = \int_0^{\pi} e^{-ir\cos\theta} d\theta \left(\int_{S_{\cos\theta}} \Omega^{\rho}(\cos\theta, x'') d\sigma_{\theta}(x') \right),$$

where $S_{\cos\theta} = \{|x'| = 1 : x' = (\cos\theta, x'')\}$ and $d\sigma_{\theta}(x')$ is its surface measure. By a further change of variable $s = \cos\theta$, the last integral is reduced to

$$g(r,\xi') = \int_{-1}^{1} e^{-irs} (1-s^2)^{-1/2} \left(\int_{S_s} \Omega^{\rho}(s,x'') \, d\sigma_s(x') \right) \, ds.$$

Set $x'' = \sqrt{1 - s^2}y'$. Then $y' \in S^{n-2}$ and

(5)
$$g(r,\xi') = \int_{-1}^{1} e^{-irs} (1-s^2)^{(n-3)/2} \left(\int_{S^{n-2}} \Omega^{\rho}(s,\sqrt{1-s^2}y') \, d\sigma_{n-2}(y') \right),$$

where $d\sigma_{n-2}(y')$ is the surface measure of S^{n-2} .

422

From (5) we observe that $g(r, \xi') = (h(s)w(s))^{\hat{}}(r)$, where

$$h(s) = \int_{S^{n-2}} \Omega^{\rho}(s, \sqrt{1-s^2}y') \, d\sigma_{n-2}(y') \quad \text{and} \quad w(s) = (1-s^2)^{(n-3)/2} \chi_{(-1,1)}(s).$$

Without loss of generality, we may assume that $\Omega \in L^q(S^{n-1})$ for some $1 < q < \infty$. Let q' be the conjugate of q; 1/q' + 1/q = 1. By Hölder's inequality,

$$\begin{aligned} |h(s)| &= \left| \int_{S^{n-2}} \Omega^{\rho}(s, \sqrt{1-s^2}y') \, d\sigma_{n-2}(y') \right| \\ &\leq \omega_{n-2}^{1/q'} \left(\int_{S^{n-2}} |\Omega^{\rho}(s, \sqrt{1-s^2}y')|^q \, d\sigma_{n-2}(y') \right)^{1/q} \\ &= c \left(\int |\Omega^{\rho}(s, \sqrt{1-s^2}y')|^q \, d\sigma_{n-2}(y') \right)^{1/q}. \end{aligned}$$

 ω_{n-2} is the area of S^{n-2} . Hence,

$$\begin{split} \int_{-1}^{1} |h(s)|^{q} w(s) \, ds &\leq c \int_{-1}^{1} (1-s^{2})^{(n-3)/2} \, ds \int_{S^{n-2}} |\Omega^{\rho}(s,\sqrt{1-s^{2}}y')|^{q} \, d\sigma_{n-2}(y') \\ &= c \|\Omega\|_{L^{q}(S^{n-1})}^{q}. \end{split}$$

Therefore, $|h(s)|^q w(s) \in L^1(-1, 1)$.

Let 1 < p' < q and r = q/p'. Using Hölder's inequality again,

$$\begin{split} \int_{-1}^{1} |h(s)w(s)|^{p'} ds &= \int_{-1}^{1} |h(s)|^{p'} w(s)^{1/r} w(s)^{p'-1/r} ds \\ &\leq \left(\int_{-1}^{1} |h(s)|^{q} w(s) ds \right)^{1/r} \left(\int_{-1}^{1} w(s)^{r'(p'-1/r)} ds \right)^{1/r'} \\ &\leq c \|\Omega\|_{L^{q}(S^{n-1})}^{q/r} \left(\int_{-1}^{1} (1-s^{2})^{[(n-3)/2]r'(p'-1/r)} ds \right)^{1/r'} \\ &= c \|\Omega\|_{L^{q}(S^{n-1})}^{p'} \left(\int_{-\pi/2}^{\pi/2} |\sin \theta|^{(n-3)r'(p'-1/r)+1} d\theta \right)^{1/r'}. \end{split}$$

This last integral is convergent if (n-3)r'(p'-1/r)+1 > -1. This inequality, obviously, holds for all p' when $n \ge 3$. In the case n = 2, it holds whenever 1 < p' < 2/(1+1/q). Therefore, if $\Omega \in L^q(S^{n-1})$, $1 < q \le \infty$, then there always exists some p', 1 < p' < 2, such that $h(s)w(s) \in L^{p'}(-1,1)$. By the Hausdorff-Young inequality

$$\begin{split} \|g(\cdot,\xi')\|_{L^p(1,\infty)} &\leq \|g(\cdot,\xi')\|_{L^p(-\infty,\infty)} = \|(h(s)w(s))^{\widehat{}}\|_{L^p(-\infty,\infty)} \\ &\leq \|h(s)w(s)\|_{L^{p'}(-\infty,\infty)} \\ &= \|h(s)w(s)\|_{L^{p'}(-1,1)} \leq c \|\Omega\|_{L^q(S^{n-1})}^{p'} = A. \end{split}$$

This proves that $\hat{H}(\xi)$ is bounded, and thus T is bounded on $L^2(\mathbb{R}^n)$, $n \ge 2$.

Using the technique of complex interpolation and an argument similar to the one in [1], the L^p boundedness can be established. We mention it briefly.

Define

$$m_z(\xi) = \text{P.V.} \int_{\mathbb{R}^n} \frac{H(x)}{|x|^z} e^{-ix \cdot \xi} \, dx \cdot |\xi|^{-z}$$

and

$$(T_z f)\widehat{}(\xi) = m_z(\xi)\widehat{f}(\xi),$$

 $|\operatorname{Re}(z)| < \eta$ for some $\eta > 0$. T_z is an analytic family of operators in the sense of Stein. Also $T_0 = T$. Each T_z is a principal-valued convolution operator, $T_z f = P.V.H_z * f$, where $H_z = m_z$. As proved in [1], if $0 < \operatorname{Re}(z) \leq \eta$ and η small enough, then

(6)
$$\sup_{|y|>0}\int_{|x|>2|y|}|H_{z}(x+y)-H_{z}(x)|\,dx\leq c_{z},$$

where the constant c_z depends only on the real part of z. Also a similar argument as in the L^2 case will show that $|m_z(\xi)| \leq c$ for $|\operatorname{Re}(z)| \leq \eta$, when η is small enough. Therefore $||T_{-\eta+iy}||_2 \leq c$ and $||T_{\eta+iy}||_r \leq c_\eta$ for $-\infty < y < \infty$ and $1 < r < \infty$. By complex interpolation, if 1/p = (1 - 1/2)/2 + (1/2)/r then $||T||_p = ||T_0||_p \leq c$. Hence, T is bounded on $L^p(\mathbb{R}^n)$, $1 , <math>n \geq 2$.

BIBLIOGRAPHY

- 1. Robert Fefferman, A note on a singular integral, Proc. Amer. Math. Soc. 74 (1979), 266–270.
- 2. Javad Namazi, On a singular integral, Thesis reprint.
- 3. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970.
- 4. Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971.

DEPARTMENT OF MATHEMATICAL AND COMPUTER SCIENCES, MICHIGAN TECHNO-LOGICAL UNIVERSITY, HOUGHTON, MICHIGAN 49931

424