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A SINGULAR INTEGRAL

JAVAD NAMAZI1

ABSTRACT. In this paper we show that if K(x) = fi(i)/|i|n is a Calderón-

Zygmund kernel, where Q G L*(Sn_1) for some 1 < q < oo, and 6 is a radial

bounded function, then b(x)K(x) is the kernel of a convolution operator which

is bounded on Lv(Rn) for 1 < p < oo and n > 2.

This paper is related to boundedness properties of a variation of Calderón-

Zygmund operators.

Let H{x) = b{\x\)ü{x)l\x\n be a kernel, where /s„_, fi(x) da(x') = 0, fi(Ax) =

fi(z) for x £ Rn, A > 0, and b is radial. Define

(1) f{x) = lim /       H{y)f{x -y)dy = P.V. H * f{x).
♦%l>

If b = 1 and fi G L9(5n_1) for some q > 1, then T is a Calderón-Zygmund operator

which is bounded on Lp{Rn) for 1 < p < oo and n > 1; see [4].

In [1] R. Fefferman showed that if fi satisfies a Lipschitz condition and b is

bounded, then T is bounded on Lp(Rn), 1 < p < oo, n > 2. This is not true

when n = 1; for instance, if #(2) = sin(|x|)/x, then its Fourier transform H(£) is

unbounded, indicating that T cannot be bounded on L2(Rl). It turns out that the

smoothness condition on f2 can be relaxed a great deal.

THEOREM, //fie ¿"(S"-1) for some 1 < q < oo, and b{\x\) e L°°, then T is

bounded on LP{Rn) for 1 < p < 00 and n > 2.

PROOF. First we show that the Fourier transform of H is bounded; thereby T

is bounded on L2(Rn). Using polar coordinates and letting x = px', p = \x\, we get

(2) ¿(£) = lim/       bMn(x)e-"<dx

= lim / —dp([      fi(x')eipI,i da{x')) .
e^°Je<p<l/e    P V/S"-! /

By a change of variable r — p\£\, (2) becomes

(3) H(0 = lim / £  £ ̂ ^ dr ( f      ü{x')e^rx'<' dc{x')\

H€l/«
lim/ls"*W!i!l9(r,f)ir
'-»Alii
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where

Now if

(4)

g(r,t')=[      n(x')e-™'<'da(x'),        |£'| = 1.

Sup \\g(;t')\\Lp(i,co)<A

for some 1 < p < oo and a constant A, then we claim that ff(£) is bounded. To

prove the claim, first we observe that

\g(r,t')\=   í      ü{x')e-^'Ua{x')
JS"-1

=   /       n{x'){e-irx'Z' -l)da{x')
JS"-1

< 2r||fi||Li(Sn-i) = cr

by the mean value theorem. Using this and Holder's inequality, we see that

fJo

b{r/\t\) g(r,n dr < fJo

\9(r,Z')\
dr

Jo   r £i"(l,oo),

<||fe|U(c + A||l/r||L,/(li0O))<c,

where 1/p' = 1 - 1/p. Hence, by Lebesgue's dominated convergence theorem, the

limit in (3) exists and |if(£)| < c.

Now let us see when condition (4) may hold. Let p be a rotation such that

/>(£') = (15 0,0,..., 0). In the integral of g(r, £') make the change of variable x' —>

p-V, and let fi"(x') = fi(p-V). Then

g(r,t')= I      n{x')e-irx'£ do-{x')= [      n"(x,)e-ir^~lx'^ da{x')
Jsn~i Js™-1

= /       np{x')e-irx'•# = f      Qp(x')e-ir< da{x'),
Js*-1 JS"'1

where x' = (xi,x'2,...,x'n) = (x[,x").  Taking x[ = cosö, we can write the last

integral as

g(r,?) = P e-ircoaede( f       np{cosO,x")dc-e(x')),
Jo \Jsco,B )

where Scose = {\x'\ = 1: x' = (coso,x")} and dag(x') is its surface measure. By a

further change of variable s = cos 9, the last integral is reduced to

g(r, O = f e~ir'(l - s2)-x'2 (j il'{», x") da3{x')^ ds.

Set x" = VT^y. Then y' <E Sn~2 and

(5)      g(r, O = f e-ir'(l - s2)("-3)/2 (J    2 W(s, y/l^^y') dan.2(y'^j ,

where don-2(y') is the surface measure of 5 n-2
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From (5) we observe that g(r, £') = (h(s)w(s))~(r), where

h(a)= [      fi'(s,vT^y)^n-2(2/')    and    w{$) = (1 - «a)(B-8)/aX(-i.l)W-
Jsn~2

Without loss of generality, we may assume that fi G L9(Sn_1) for some 1 < q <

oo. Let q' be the conjugate of q\ 1/q' + l/q = 1. By Holder's inequality,

\h(s)\=   [      np(s,Vl-s2y')do-n-2(y')

= c (j \W{s, y/1 - s2y')\" dan.2(y')\      ■

uin-2 is the area of Sn~2. Hence,

[   \h(s)\«w(s) ds<c f   (1 - s2)("-3)/2 ds [       \np(s, N/T^ây')!' dan.2(y')
J-l J-Ï JS"~2

— rllfill9

Therefore, \h{s)\"w{s) G Ll{-1,1).

Let 1 < p' < q and r = q/p'. Using Holder's inequality again,

Í   \h{s)w{s)\p' ds = f   |/i(s)|p'w(s)1/ru;(s)p'-1/rc/s

<(f   \h(s)\qw(s)ds]     (Í   w(s)r'(p'-1/r)d«)

<c||n|i«f(s.-i)(/1(i-»a)I(w-s)/aIr'(/-1/r)d»)

= c||fi||PL',(5"-M(/'r/22lsinöl(n"3)r'(P'"1/r)+ldÖ)

1/r'

1/r'

1/r'

This last integral is convergent if (n - 3)r'(p' - 1/r) + 1 > -1. This inequality,

obviously, holds for all p' when n > 3. In the case n = 2, it holds whenever

1 < p' < 2/(1 + l/q). Therefore, if fi G L^S1™"1), 1 < q < oo, then there always

exists some p', 1 < p' < 2, such that h(s)w(s) G Lp'(-l,l). By the Hausdorff-

Young inequality

HíK-,£')IIlp(1,oo)  <  \\g{-,t')\\LP(-oo,oo) = \\{h(s)w{s)y\\^(-00,00)

< \\h{8)w{s)\\LP>(_00t00)

= ||M*H*)IIlp'(-i,i) < 4n\\Li(s«-i) = A-

This proves that H(£) is bounded, and thus T is bounded on L2(Rn), n > 2.

Using the technique of complex interpolation and an argument similar to the

one in [1], the V boundedness can be established. We mention it briefly.
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Define

m,(0 = P.V. /   ^e-»-<efa.|í|-

and

(T,/HO-m,(0/(0,
|Re(z)| < 77 for some r\ > 0.  T¿ is an analytic family of operators in the sense of

Stein.   Also To = T.  Each Tz is a principal-valued convolution operator, Tzf =

P.V.HZ * /> where Hz = mz.   As proved in [1], if 0 < Re(z) < rj and n small

enough,then

(6) sup  f \Hz(x + y)-Hz(x)\dx<cz,
\y\>0 J\x\>2\y\

where the constant c2 depends only on the real part of z. Also a similar argument

as in the L2 case will show that |m2(£)| < c for |Re(z)| < r¡, when r\ is small enough.

Therefore ||T_,+iy||2 < c and HT^+^H,. < cv for -oo < y < oo and 1 < r < oo.

By complex interpolation, if 1/p = (1 - l/2)/2 + (l/2)/r then ||T||P = ||7o||P < c.
Hence, T is bounded on Lp(Rn), 1 < p < oo, n > 2.
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