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COMPARISON THEOREM FOR CONJUGATE POINTS
OF SYSTEMS OF nTH ORDER

NONSELFADJOINT DIFFERENTIAL EQUATIONS

E. C. TOMASTIK

ABSTRACT. A comparison theorem for conjugate points of the two sys-

tems of linear differential equations x(") — (—l)n~kp(t)x = 0 and j/n' —

(—l)n~kq(t)y = 0, where p(t) and q(t) are mxm matrices of continuous func-

tions, is given. It is assumed that q(t) is positive with respect to a certain

cone but no positivity conditions of any kind are imposed on p(t). No self-

adjointness conditions are assumed; however, the results are new even in the

selfadjoint case.

This paper shall be concerned with the comparison of the conjugate points of

the two systems of linear differential equations

(1) iW-(-l)"-fcp(i)i = 0

and

(2) y^-(-l)n-kq(t)y = 0

where p(t) and q(t) are mxm matrices of continuous functions on some interval

[a, b], a > 0. As will be seen later, q(t) will satisfy a "positivity" condition with

respect to a certain cone. But no positivity conditions of any type whatsoever are

placed on the matrix p(t). In particular, p(t) could have oscillatory components.

Since no assumptions are made concerning the symmetry of the matrices p(t) and

q(t) nor concerning the integers n and fc, systems (1) and (2) will in general be

nonselfadjoint. But even in the case that both (1) and (2) are selfadjoint, the

results presented here are new. The results are also new even if n = 2.

The first comparison theorem for second order systems was given by Morse [6].

Morse assumed both systems (1) and (2) were selfadjoint, i.e., p(t) and q(t) were

symmetric. He showed that the first conjugate point of (1) lies to the right of the

first conjugate point of (2) if q(t) — p(t) is positive semidefinite everywhere and

positive definite at at least one point. Reid [8, p. 356] extends these results to

selfadjoint systems of order 2n.

More recently, a number of individuals have given comparison theorems for (1)

and (2) in the nonselfadjoint case and for which the results are new even if (1) and

(2) are selfadjoint. The first such results have been given by Cheng [3], Schmitt

and Smith [9], Smith [10], Keener and Travis [4], and the author [11]. All of these

papers except Cheng and Keener and Travis are for n = 2. Also, all of these papers

except for author's [11], assume that p(t) and q(t) satisfy certain strong positivity
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conditions, whereas in this paper no positivity conditions whatsoever are placed on

Pit)-
In this paper it is assumed that some partition {7, J} of the integers {1,2,..., m}

has been given, that is, I U J = {1,..., m} and / fl J = 0.  The cone K is then

defined by

K = {(zi,...,zm): p€l => zß > 0,u<E J => 2M < 0}.

The interior of K is defind to be K°.

Throughout this paper it is assumed that for every t € [a, b], v £ K and v ^ 0,

q{t)veK°.
Two such examples are given by

1 1

2 1
and

1 1

1

For the first map K is the cone given by the first quadrant, and for the second map

K is the cone given by the fourth quadrant.

The number cp(a) = b is the first conjugate point of (1) if (1) has a solution

x(t) not identically zero such that x^'(o) =0, i = 0,1,..., fc — 1, and x^(b) = 0,

i = 0,1,..., n — k — 1, and (1) has no other solution x(t) not identically zero such

that xW (a) = 0, î = 0,1,..., k - 1, and x(¿) (ß) = 0, i = 0,..., m - k - 1, where
a < ß < cp(a).

Instead of dealing with (1) directly, a certain equivalent integral equation will

be considered. This integral equation uses a Green's function that has been put in

an appropriate form for the analysis that is to follows. Toward this end define

gfr.«> - (B - k - \)Kk - D! jf (« - *)*-'(« - o-1'"-1 ̂ ¿=min^

and

g(t, s, a, ß) = G((t - a)(ß - s)/(ß - a), (s - a)(ß - t)/(ß - a)).

Nehari [7] and Travis [12] have already established that g(t, s, a, ß) is the Green's

function for

(_1)«-Vn) = 0,    u(l)(a) = 0,        i = 0,...,k-l,

yil)(ß) = 0,        ¿ = 0,...,n-fc-l.

Thus x(t) is a solution of (1) with x^(a) = 0, i = 0,..., fc - 1, xw(/?) = 0,

i = 0,... ,n — k — 1, if and only if

rß

x(t) = /    g(t,s,a,ß)p(s)x(s)ds.
Ja

Before establishing an important theorem, the following lemma is recalled from

Keener and Travis [5].

LEMMA 1. Suppose f:[a,ß]—>K is continuous and f(t) G K° for some

te[a,ß].  Then JÜf(s)dseK°.

THEOREM 1. // the first conjugate point of (2) is cq(a) = b, then (2) has

a solution x(t) such that x^l\a) = 0, i = 0, ...,fc - 1, and x^(b) = 0, i =

0,..., n - fc - 1, and x(t) G K° for all t £ (a, b).
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PROOF. To establish this theorem define the Banach space

B = {ue Cn_1([a,b}) : u^(a) = 0,i = 0,...,k - 1},

with norm ||u|| = sup{|u(i)|: t G [a, 6]}. Also define the cone

K = {ueB: u(t) eK for t G [a, b}},

with interior

Xo = {ueB: u(t)GK° for t G (a, 6)}.

Consider the operator

,6

T(u) =  /   <?(i, s,a, b)q(s)u(s)ds.
Ja

Exactly as in [4] it follows that T maps K into K° and therefore by arguments

similar to those found in [4], T is /in-positive with respect to the cone K. From

this, Theorem 1 follows in the same way as found in [4].

It is useful at this time to give without a proof a result that characterizes the

structure of the matrix q = (qij).

LEMMA 2. If qv G K° for all v G K, v / 0, then qi3 ̂  0 and q^ = |<7ij|i5¿¿,-,
where 6^ = 1 if p G / and ¿M = — 1 if p G J.

Given any a G \a,b), cp(a) and cq(a) will be the first conjugate points of a of

(1) and (2) respectively. The main theorem can now be given.

THEOREM 2. Suppose a G [a,b), cq(a) = b and \pi3(t)\ < \qij(t)\ for allt G [a,b]

and alli,j= 1,..., m, and given any i = 1,..., m, there exists ji G {1,..., m} and

n G [a,b] such that |p¿j¿(n)| < |9t¿(f¿)|-  Then cp(a) > cq(a).

PROOF. Suppose contrary to the conclusion of Theorem 2, that x(t) is a nontriv-

ial solution of (1) satisfying the boundary conditions x^'(q) = 0, i = 0,... ,k — 1,

and x^(ß) = 0, i — 0,..., n - fc - 1, for some a, ß G [a, b], a < ß. Then of course

rß

x(t) = /    g(t, s, a, ß)p(s)x(x) ds.
Ja

From Theorem 1, there exists a nontrivial solution y of (2) such that y^(a) = 0,

i = 0, ...,fc- 1, yW(6) =0, i = 0,...,n-k-l, and

2/M = /   g(t,s,a,b)q(s)y(s)ds.
Ja

Let y = (y¿).  It will now be shown that for any i, y\   (a) ^ 0, y^        (6) ^ 0.

Now

/b   ßkg^g(a, s,a,b)q(s)y(s) ds.

Using the definition of g, it follows that

ßk                                  i /¿_s\fc
:g{a,8,a,b) = -f-¡--(s - a)n~h

dtkyK '   '   '  '      (n-k-iy        ' \b-a,

What is important here is that (8k/8tk)g(a,s,a,b) is positive for s G (a,b). From

Theorem 1, y(s) G Ä" for s G [a, 6] and therefore q(s)y(s) G K0 for s G (a,b).
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From the comments above concerning (8k/8tk)g(a, s, a, b) and Lemma 1, it follows

that the right-hand side of (3) is in K°. This means from (3) that y(fe)(a) G K°

and this implies that y\ (a) / 0. One can show in a very similar manner that

y¡n-k\b)¿0.

Thus yt(t) has a zero at t = a of at most fc and a zero at t = ß of at most n — fc.

Of course x¿(í) has a zero at t = a of at least fc and a zero at t = ß of at least

n — fc. Thus the terms |x¿(í)|/|y¿(í)| are continuous on (a, ß) and most importantly

bounded on (a,ß). Define

and

|x¿|| = sup{|x¿(í)|/|ík(í)| : t G (q, ß)},

\x\\ = max{||x¿|| : i = 1,... , m}.

In [7], Nehari has shown that for a < a < ß < b, g(t,s,a,ß) < g(t,s,a,b). For

t G (a,ß), it readily follows that

rß

\xi(t)\=  ¿J /    g{t,s,a,ß)pij(s)xj(s)ds
3    Ja

< 22 /    9{t,s,a,b)\pi:i(s)\ \yj(s)\ \xj(s)\ \yJ l(s)\ds
3    Ja

<J2 /   di^s^^^pi^s^ly^s^dsWxW
3    Ja

rb

<J2      9(t,s,a,b)\qij(s)\\yj(s)\ds\\x\\,
3    Ja

where the very last inequality is a strict inequality because of the hypothesis relating

Pij and qij, the fact from Lemma 2 that none of the qij are zero, the fact that none

of the yj vanish on (a, b), and that g(t, s, a, b) does not vanish for s on (a, b). Thus

for i = 1,... ,m,

(4)
MOI ̂
MOI " lu,

<
i _     rb

lty\^2j    9(i,s,a^)l^(s)l|uj(s)|ds||x||.

Of course if [a,ß] C (a, b), then (4) extends to a strict inequality on [a,/?], since

in this case y¡^0on [a,j3]. If a = a or ß = b, there remains a problem. However,

it will now be shown that if a = a, (4) holds as a strict inequality when t — a+. To

show this one needs to show that the following strict inequality given by

(5)

rb

J2 /   9{t,s,a,b)\pl}(s)\\y3(s)\ds/\yi(t)\
3   Ja

rb

<J2      9{t,s,a,b)\qij(s)\\y:j(s)\ds/\yi(t)\
„    Ja
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remains a strict inequality as t —► a+ if a = a. This can be seen by realizing that

the limit as t —► a+ of the left-hand side of (5) is just

(6) E/"|íff(a'a'a'ft)l*iWllí/¿(«)l^/í/ífc)(a)l

by L'Hôpital's rule and the limit as t —* a+ of the right-hand side of (5) is

(7) C/ ^9(a,s,a,b)\piM\vÁ*)\d»/\v?Ha)\-

Recalling that (8k/8tk)g(a,s,a,b) is positive on (a,b), it follows readily as before

that (6) is strictly less than (7). A similar argument is used for t —* b~ if ß = b.

It therefore follows that

rb

(8) ||xi|| <    sup   V /   g(í,s,a,6)|gij(3)||yj(s)|ds||x||/|i/i(í)|
te(a,ß)     ■    Ja

for i = l,...,m.

For t G (a,6), y(i) G K°, y¿(í) = |y¿(í)|¿¿ and u¿(í) ^ 0. Also, from Lemma 2,

ktj(s)l = Qij(s)Si6j and ^-(a) ^ 0. Thus |y¿(f)| = y¿(í)¿¿ and

rb

22      p(i,s,a,6)|e7^(s)| |%(s)|ds
i    Ja

fb
= 6i¿2 I   9{t,s,a,b)qij(s)yj(s)ds = 6iyi(t).

3    Ja

Therefore the right-hand side of (8) is just ||x||, i.e., ||x¿|| < ||x|| for i = 1,... ,m.

This in turn implies that ||x|| < ||x||. From this contradiction, we infer the truth of

the theorem.

The following example shows that the condition Pij(t) < \qij(t)\ is not sufficient

to obtain the conclusion of Theorem 2.  Let q be the identity matrix and let p =

-i "i   i n — 2 and fc = 1.   Of course cq(0) = ir.   Notice that two solutions of

x" +px = 0 are x = (sin \¡2t, - sin \[2t) and x = (t, t). Thus cp(0) = ir/y/2 < c,(0).

This examples also shows that pij

Notice furthermore that if q =

(t) < qij(t) does not imply cq(0) < cp(0).

and p is the identity matrix, Theorem 2
i  -i

-i  i

would apply and show that cp(0) > tt/v2, but the classical comparison theorem of

Morse would not apply here since neither p - q nor q — p are positive semidefinite.
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