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SECOND DERIVATIVE Lp-ESTIMATES FOR ELLIPTIC
EQUATIONS OF NONDIVERGENT TYPE

FANG-HUA LIN1

ABSTRACT. We obtain an a priori estimate of second derivatives in Lp, for

some p > 0, for solutions of nondivergent, uniformly elliptic P.D.E.'s of second

order.

1. Introduction. Let fi Ç Rn be a smooth, bounded domain, and let a = (a¿_,)

be a measurable, symmetric n x n matrix-valued function on fi which satisfies

(1.1) XI < a(x) < A-1/,    for some constant

A G (0,1) and a.e. x G fi, in the sense of nonnegative definiteness. Set

82
La =   22   ai3(X)

dxidxi
i,3 = L ■>

and let u G C1,1(fí) be the solution of the following problem:

(1.2)

where / G Ln(ü).

The main aim of this note is to prove the following

THEOREM.   There is a positive constant p = p(n, X) such that

(1.3) l|P2w||LP(n)<c(n,A,p,fi)||/||Ln(n),

for any u G C1'1(fi); u\an = 0. Here f = Lau and D2u is the Hessian matrix ofu.

It should be noted that for every p, 1 < p < +00, and n > 3 there is an operator

La which satisfies (1.1), but an a priori estimate of the form

(1.4) ||P2u||Lp(n) < c(n, A,p,fi)||/||i/P(n),

where u satisfies (1.2), is not true. See, for example, [4 and 6].

As far as inequality (1.3) is concerned, we can assume that a is a smooth matrix-

valued function on fi. In such a case we will study the behavior of nonnegative

solutions, v, to the adjoint equation

(1.5) L'av ee ¿ -^-[ai:(x)v} = 0,    in fi.

i,j=l        %      3
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It is shown by Fabes and Stroock [3] that

(1.6)

(n-l)/n

|¿r jB v(y)n/in-1) dyj < c(n, A)|i| Jg v(y) dy

for all balls B whose concentric double is contained in fi.

(1.6) combines with a simple argument (see §2 below) to conclude the following

inequality for the solution u of (1.2):

(1.7) ||Z?2u||Lp(no < c(n,p, A, fi',fi)||/||Ln(n)

for all fi' (g fi and p = p(n, A) > 0.
In order to prove (1.3) we will need a version of (1.6) near the boundary, 8Cl,

of fi. For this purpose we normalize fi (by a proper scaling) so that the absolute

value of the curvatures of 8Ü is bounded by one. Then we have the following

LEMMA. Let v > 0 be a solution of the adjoint equation in the set {x G

fi:dis(x,<9fi) < 1}, and v|an =0.  Then

(1.8) [JL f      r(„)»/(»-i) dy] " < c(n, A)^ /      v(y) dy
.\a\ Jßnn                         J I-d| JBnfi

for all balls B — Br(x) such that dis(x, 3fi) < r/3 and r < 1/3.

The proof of the lemma, which is similar to that in [3], was suggested to me by

Professor E. Fabes. The author wishes to express his gratitude to Professor Fabes

for several interesting discussions.

2. Proof of the Theorem. First we note that, by [1], estimates (1.6) and

(1.8) will imply that for any measurable subset E C fi,

(2.1) f Ga(o,y)dy>c(X,n,Ü)\E\m,
Je

for some m = m(X,n) > 0, where Ga(x,y) is Green's function of the operator La

on fi, and o G fi is a fixed point (but arbitrarily chosen). For the details of the

proof we refer to [3]; see also [2, Theorem 1].

Now we claim that (2.1) implies (1.3).

PROOF OF THE CLAIM. Let u G C1,1^) solve (1.2). Without loss of generality

we assume that ||/||j>(n) = 1, and we want to show that

(2.2) ||P2it||¿p(n) < c(n,X,p,fi),    for some p = p(n, A) > 0,

where D2u is the Hessian matrix of the function u.

By Lau = Tr(A-D2u) = £l=1 alXl-J2']=k+i otjXj, where A,, A2,.. •, Afc, -Afe+i,

..., —An are eigenvalues of the matrix (D2u) with A¡'s nonnegative, fc = k(x),

and q¿, i — l,...,n, are functions satisfying X < at < A-1 for i = 1,2,...,n.

Thus Lau = aP - ßN, where X<a<X-\X<ß< A"1, and P = £¿=i A¿,

* = £;=fe+iV
Now we introduce a new operator, which will depend on u, as follows: If a; G fi,

and Q(x) G 0(n) (i.e., orthogonal matrices),

Q(xf(D2u(x))Q(x) = diag{Ai, A2, • -., Afc, -Afc+i,..., -A„},
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then set

a*(x) = Q(x)tdiagaX,..., ±A, +2A"1,..., +2A"1}Q(x)
■ 2'1' • - É ' 2'

so that

±XI<a*(x) < 2A"1/,    for a.e. x G fi,

and a* will be measurable since u G Cx,1(fi). Moreover,

(2.3) La.u = Lau--j\D2u\ = -f-~i\D2u\

for some measurable function 7 G L°°(fi), with 7 > A/2.

Now let a* be a smoothing of a* so that \XI < a*(x) < 2A-1/, for x G fi. Then

Lae.u(x) = -f(x) - i(x)\D2u\(x) + Sij(x)uXiXj(x),

where £ij(x) G L°°(fi) and, as e —► 0+, £ij(x)    —►    0.   Now by the maximum

principle of Alexandorff, Pucci and Bakelman [7], we have

(2.4) f Ga.(o,y)\D2u(y)\dy < c(A,n,fi)j|/||Ln(n)
Jn

+ c(n, X, fl)\\eljUXiXj ||Ln(n),    for all s > 0.

Let Et = {xG fi: \D2u(x)\ > i}. Then

(2.5) í /   Gai fe 2/) d2/ < c(n, A, fi) [l + \\SijUXiXj \\L»(n)] ■
JEt

By (2.1) we deduce that

(2.6) |Pt| < t-l>mc(n, X, fi)1/"1 [1 + lley-u^. ||L.(n)]1/m .

This is true for all e > 0. We let e —> 0+ and obtain

|Pt| <c(n,A,fi)1/mr1/m.

(1.3) follows if we choose p — p(n, X) < 1/m.    Q.E.D.

3. Proof of the Lemma. Let v, fi be as in the lemma, let xo G fi with

dis(z0,dfi) < 7/3, 7 G (0, §), and B^(x0) (1 fi = fi-,(x0) C ü2i(xq) C fi. We first

have

Lemma 1.

J_    f     V(y)n/(n-l)

\*h\ Jn^
dy

(n-l)/n

<c(n,X)j--: /        v(y)dy.
I"3-y/2| yn3V2

PROOF. See the proof of Theorem 2.1 in [3].

Next we want to show that the measure v dy satisfies the "doubling condition"

near the boundary.

LEMMA 2.   Let v,ù1,fl2l be as above.  Then

/    v(y)dy <c(n,X) /      v(y)dy
Jn^ Jn-1/2

for a//7 G (0, g).
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PROOF. By a proper scaling, it will suffice to prove the following statement: If

v > 0 is a solution of an adjoint equation in fi4, and v\oq = 0, where <9fi is smooth

and has curvatures bounded by 1/6, then there is a constant c = c(n, X) such that

(3.1) f   v(y)dy<c(n,X) [   v(y)dy.
Jn2 Jsî!

To show (3.1), we smooth the corner of <9fi4 to obtain a new domain fi4 C ÍI4, so

that O4 D fi3 and the curvatures of 8(1.4 are bounded by c(n) (a constant depending

only on n). Let G(x, y) be Green's function of La on fi4 (it should be noted that the

matrix a here is obtained from (1.1) by a proper scaling in independent variables).

Then

(3.2) v(y) =  I     (a(x)DxG(x,y),n(x))v(x)dsx,        Vy G fi4,
JdVtt

where n(x) = the inner unit normal vector of 8(14 at x G <9fi4. Set

(3.3) Ul(x)=  i  G(x,y)dy,    for i= 1,2.
JQi

Then

(3.4) /   v(y)dy= (a(x)DxUi(x),n(x))v(x)dsx.
Jn¡               Jdù4

Now we observe that Ui,u2 have the following properties:

(i) Lam(x) = -xnt(z), fotj = 1,2.

(ii) 0 < Ui(x) < c(n,X) in fi4, and wi|an   = 0, for i = 1,2.

(iii) For any K € fi4,

inf 1x2(2;) > inf ui (x) > c(n, X, K) > 0.
x£K x€K

(ii) and (iii) imply that

(3.5) ui(x) > c(n,X,K)u2(x)    on K.

By our choice of Ú4, it is easy to see that there are two positive constants

6 = 6(n, A) > 0 and c = c(n, A) > 0 such that

(i) d(x) ± cd2(x) > d(x)/2, for all x G fi4 such that d(x) < 6,

(ii) La[d(x) + cd2(x)\ > 1 and La[d(x) - cd2(x)\ < -1 for all x G fi4 with

d(x) < 6, where d(x) = dis(x,(9fi4). See the appendix of [5].

By the maximum principle we conclude that there is a positive constant c =

c(n, X) such that

(3.6) ui > (2;)c-1(n,A)[c/(x)-r-cd2(2:)],        u2(x) < c(n, X)[d(x) - cd2(x)\

for x GÚ4 and dis(x, c>fi4) < 6. (3.6) implies that

(3.7) (a(x)Dxu2(x),n(x)) <c(n,X)2(a(x)Dxui(x),n(x))       Vx G dfi4.

By (3.4) we obtain (3.1) and thus complete the proof of Lemma 2.    Q.E.D.

Finally, one notices that (1.8) follows from Lemmas 1 and 2 and, hence, completes

the proof of the Theorem.
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