ON APPROXIMATION BY RATIONALS FROM A HYPERPLANE

GERHARD GIERZ AND BORIS SHEKHTMAN

ABSTRACT. Let $E \subset C(K)$ be a subspace of continuous functions defined on a compact Hausdorff space K. We characterize those subspaces of codimension 1 for which the rational functions with denominators and enumerators from E are dense. The condition for the density of this very nonlinear set of functions turns out to be a linear separation condition.

A number of recent discoveries in approximation theory indicated some almost supernatural powers of rational approximation (see [1]). That is, starting with a linear subspace $H \subset C([0,1])$, the set of rational functions with the numerator and the denominator in H seems to have density properties disproportionate to its share.

In this note we present the necessary and sufficient condition for the density of such rationals when H is a hyperplane in a C(X)-space. Surprisingly enough the condition for the density of this nonlinear set of functions turns out to be a (very linear in spirit) separation condition.

We will need some notation: Let X denote a compact Hausdorff space; C(X) the set of all continuous real-valued functions on X; M(X) the space of all regular Borel measures on X. The elements from M(X) are identified with the continuous functionals on C(X). As usual, we define the support supp f of a continuous function $f \in C(X)$ to be the closure of the set $\{x \in X : f(x) \neq 0\}$; the support of a measure μ on X is defined to be the smallest closed set $A \subset X$ such that supp $f \subset X \setminus A$ implies $\mu(f) = 0$. If U is a subset of X, we let

$$\mathcal{F}(U) = \{ f \in C(X) \colon \text{supp } f \subset U, \ f \ge 0 \}.$$

For every $\mu \in \mathcal{M}(X)$ we use $\mu = \mu^+ - \mu^-$ to denote the orthogonal decomposition of μ (i.e., $\mu^+ \wedge \mu^- = 0$). Recall that for every pair of measures $\mu, \nu \in \mathcal{M}(X)$ their infimum is given by

$$(\mu \wedge \nu)(f) = \inf\{\mu(g) + \nu(h) \colon 0 \le g, h, \ g+h = f\},\$$

where $f \in C(X)$ is positive (see [2, p. 72]). Let $H = \{f \in C(X) : \mu(f) = 0\}$ for some $\mu \in \mathcal{M}(X)$. Let

$$R(H) = \{gh^{-1} \colon g, h \in H; h(x) > 0 \ \forall \ x \in X\}.$$

LEMMA. Let $\mu \in \mathcal{M}(X)$ and let U be an open subset of X such that supp $\mu^+ \cap U \neq \emptyset \neq \text{supp } \mu^- \cap U$. Then we can find functions $\varphi_1, \varphi_2 \in \mathcal{F}(U)$ such that $\mu(\varphi_1) < 0 < \mu(\varphi_2)$.

PROOF. Suppose φ_1 does not exist. Then for all $g \in \mathcal{F}(U)$ we would have $\mu(g) \geq 0$; i.e., $\mu^+(g) \geq \mu^-(g)$. If $f \in \mathcal{F}(U)$, and if f = g + h for positive functions

Received by the editors January 14, 1985 and, in revised form, April 15, 1985. 1980 Mathematics Subject Classification. Primary 41A20.

g and h, then $g, h \in \mathcal{F}(U)$. Thus $\mu^+(g) + \mu^-(h) \ge \mu^-(g+h) = \mu^-(f)$. Hence the above explicit expression for $\mu^+ \wedge \mu^-$ yields $0 = (\mu^+ \wedge \mu^-)(f) \ge \mu^-(f) \ge 0$ for all $f \in \mathcal{F}(U)$. This would imply $\mu^-(f) = 0$ whenever supp $f \subset U$; i.e., supp $\mu^- \subset X \setminus U$, contradicting $\emptyset \neq U \cap \text{supp } \mu^-$.

The proof of the existence of φ_2 is similar. \square

THEOREM 1. Let $1 \in H$. For the set R(H) to be dense in C(X), it is both necessary and sufficient that

(1)
$$\operatorname{supp} \mu^+ \cap \operatorname{supp} \mu^- \neq \emptyset.$$

PROOF. To prove necessity we first assume that $\sup \mu^+ \wedge \sup \mu^- = \emptyset$. Let $f \in C(X)$ be such that $f|_{\sup \mu^+} = 1$, $f|_{\sup \mu^-} - 1$. If ||f - g/h|| < 1, then g should be positive on $\sup \mu^+$ and negative on $\sup \mu^-$ (since h is strictly positive). Then $\mu^+(g) > 0$ and $\mu^-(g) < 0$, since μ^+ and μ^- are positive measures, and hence $g \notin H$.

To prove sufficiency, let $x_0 \in \operatorname{supp} \mu^+ \cap \operatorname{supp} \mu^-$, and let f be an arbitrary function from C(X). For $\varepsilon > 0$ let U be a neighborhood of x_0 such that $|(f(x_0) - f(x))| < \varepsilon/2$ for all $x \in U$. By the Lemma, there are functions $\varphi_1, \varphi_2 \in \mathcal{F}(U)$ such that $a = \mu(\varphi_1) > 0$, $b = \mu(\varphi_2) < 0$. We claim that there exists a function $\varphi \in \mathcal{F}(U) \cap H$ with $\varphi(x_0) > 0$. Indeed, pick any $\gamma \in \mathcal{F}(U)$ with $\gamma(x_0) = 1$ and let $r = \mu(\gamma)$. If r < 0, then let $\varphi = a(a - r)^{-1} \cdot \gamma - r(a - r)^{-1} \cdot \varphi_1$; if r > 0, let $\varphi = r(r - b)^{-1} \cdot \varphi_2 - b(r - b)^{-1} \cdot \gamma$. In any case it follows that $\mu(\varphi) = 0$ and $\varphi \in \mathcal{F}(U)$.

Let $\varphi(x_0) = \rho > 0$. Let $W \subset U$ be a neighborhood of x_0 such that $\varphi_{|W} \ge \rho/2$. Using the same argument as above, we obtain a function $\psi \in \mathcal{F}(W)$ such that $\mu(\psi) = -\mu(f)$; i.e., $f + \psi \in H$. Clearly, for an arbitrary integer N the function

$$r = \frac{f + \psi + N \cdot f(x_0)\varphi}{1 + N\varphi} \in R(H).$$

Pick $N \ge (4\|\psi\| - 2\varepsilon)/(\varepsilon\rho)$. We obtain the inequality $\|f - r\| \le \varepsilon$, since

- (1) For $x \notin U$, we have |f(x) r(x)| = 0.
- (2) $x \in U \backslash W$ implies

$$|f(x)-r(x)|=rac{Narphi(x)}{1+Narphi(x)}|f(x)-f(x_0)|\leq rac{arepsilon}{2}.$$

(3) $x \in W$ yields

$$|f(x) - r(x)| \leq rac{Narphi(x)}{1 + Narphi(x)} |f(x) - f(x_0)| + rac{\|\psi\|}{1 + N
ho/2} \ \leq rac{arepsilon}{2} + rac{\|\psi\|}{1 + N
ho/2} \leq arepsilon. \quad \Box$$

We now obtain two easy generalizations of Theorem 1. In the first we drop the assumptions about the constants.

THEOREM 2. Let $H = \{ f \in C(X) : \mu(f) = 0 \}$ for some $\mu \in \mathcal{M}(X)$. Then R(H) is dense in C(X) iff condition (1) holds.

PROOF. Condition (1) guarantees the existence of a strictly positive function $\varphi \in H$: Indeed, let $r = \mu(u)$, where u denotes the constant function with value 1. From the Lemma (with U = X) we conclude that there is a positive function

 φ_1 with $\mu(\varphi_1) = -r$. The function $\varphi = u + \varphi_1$ will be strictly positive, and this function belongs to H. Consider the hyperplane $H_{\varphi} = \{f/\varphi : f \in H\}$. Then

$$H_{\varphi} = \{ f \in C(X) \colon \mu_1(f) = 0 \},$$

where $\mu_1 = \varphi \cdot \mu$. It is easy to see that $\mu_1^+ = \varphi \mu^+$, $\mu_1^- = \varphi \cdot \mu^-$ and $1 = \varphi/\varphi \in H_\varphi$. Hence supp $\mu_1^+ \cap \text{supp } \mu_1^- = \text{supp } \mu^+ \cap \text{supp } \mu^- \neq \emptyset$, and by Theorem 1, $\overline{R(H_\varphi)} = C(X)$. Therefore for every $\varepsilon > 0$ and $f \in C(X)$, there exist $g, h \in H$ such that $\|f - (g/\varphi)/(h/\varphi)\| < \varepsilon$, or, equivalently, $\|f - g/h\| < \varepsilon$. \square

Another obvious generalization of Theorem 1 is as follows.

THEOREM 3. Let M be a finite subset of M(X) such that for any distinct $\mu, \nu \in M$, supp $\mu \cap \text{supp } \nu = \emptyset$. Let $H = \{ f \in C(X) : \mu(f) = 0 \ \forall \ \mu \in M \}$. Then R(H) is dense in C(X) iff, for every $\mu \in M$, condition (1) holds. \square

We now give some examples for Theorem 2.

EXAMPLES. Consider the subspaces

$$H_1 = H_1(a,b) = \left\{ f \in C([0,1]) \colon \int_0^a f \, dx = \int_b^1 f \, dx \right\},$$

for some $a, b \in (0, 1)$,

$$H_2 = H_2(\varphi) = \left\{ f \in C([0,1]) \colon \int_0^1 f \cdot \varphi \, dx = 0 \right\};$$

 $\varphi \in C\{([0,1])\}$, where $\{\tau \colon \varphi(\tau) = 0\}$ has no interior points,

$$H_3(j) = \operatorname{span}\{\cos k\theta\}_{k=0, k \neq j}^{\infty} \subset C([0, \pi]).$$

From Theorem 2 we have

$$\begin{split} \overline{R(H_1)} &= C([0,1]) \quad \text{iff } a = b, \\ \overline{R(H_2)} &= C([0,1]) \quad \text{iff } \varphi \text{ changes sign on } [0,1], \\ \overline{R(H_3)} &= C([0,\pi]) \quad \text{iff } j \neq 0. \end{split}$$

The last example follows from the second example and the fact that $H_3(j)$ is dense in the hyperplane

$$H = \left\{ f \in C([0,\pi]) \colon \int_0^{\pi} f(\theta) \cos j\theta \, d\theta = 0 \right\}.$$

REFERENCES

- D. J. Newman, Approximation with rational functions, CBMS Regional Conf. Ser. in Math., no. 41, Amer. Math. Soc., Providence, R. I., 1979.
- H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974.

Department of Mathematics, University of California, Riverside, California 92521