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ON APPROXIMATION BY RATIONALS FROM A HYPERPLANE

GERHARD GIERZ AND BORIS SHEKHTMAN

ABSTRACT. Let E C C(K) be a subspace of continuous functions defined on

a compact Hausdorff space K. We characterize those subspaces of codimension

1 for which the rational functions with denominators and enumerators from E

are dense. The condition for the density of this very nonlinear set of functions

turns out to be a linear separation condition.

A number of recent discoveries in approximation theory indicated some almost

supernatural powers of rational approximation (see [1]). That is, starting with a

linear subspace H C C([0,1]), the set of rational functions with the numerator

and the denominator in H seems to have density properties disproportionate to its

share.

In this note we present the necessary and sufficient condition for the density of

such rationals when H is a hyperplane in a C(X)-space. Surprisingly enough the

condition for the density of this nonlinear set of functions turns out to be a (very

linear in spirit) separation condition.

We will need some notation: Let X denote a compact Hausdorff space; C(X)

the set of all continuous real-valued functions on X; M (X) the space of all regular

Borel measures on X. The elements from M(X) are identified with the continu-

ous functionals on C(X). As usual, we define the support supp/ of a continuous

function / G C(X) to be the closure of the set {x G X: f(x) ^ 0}; the support

of a measure p on X is defined to be the smallest closed set A c X such that

supp / C X\A implies p(f) = 0. If U is a subset of X, we let

7(U) = {/ G C(X) : supp / C U, f > 0}.

For every p G M(X) we use p = p+ -p~ to denote the orthogonal decomposition

of p (i.e., p+ A p~ =0). Recall that for every pair of measures p, v G Aí(X) their

infimum is given by

(p A v)(f) = in{{p(g) + u(h) : 0 < g,h, g + h = /},

where / G C(X) is positive (see [2, p. 72]).  Let H = {/ G C(X): p(f) = 0} for
some p G M(X). Let

R(H) = {gh~l :g,hGH; h(x) > 0 V x G X}.

LEMMA. Let p G M(X) and let U be an open subset of X such that supp/i+ fl

U ^ 0 ^ supp/z- fl U. Then we can find functions <pi,p2 G 7(U) such that

p(<pi) < 0 < p(p2).

PROOF. Suppose pi does not exist. Then for all g G 7(U) we would have

p(g) > 0; i.e., p+(g) > p~(g). If / G 7(U), and if / - g + h for positive functions

Received by the editors January 14, 1985 and, in revised form, April 15, 1985.
1980 Mathematics Subject Classification.  Primary 41A20.

©1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page

452



APPROXIMATION BY RATIONALS FROM A HYPERPLANE 453

g and h, then g,h G 7(U). Thus p+(g) + p~(h) > p~~(g + h) = //"(/)• Hence the
above explicit expression for p+ A p~ yields 0 = (p+ A p~)(f) > l¿~(f) > 0 for

all / G 7(U). This would imply p~(f) = 0 whenever supp/ C U; i.e., supp//- C

X\U, contradicting 0 ^ U fl supp//-.

The proof of the existence of ¡p2 is similar.    D

THEOREM 1. Let 1 G H. For the set R(H) to be dense in C(X), it is both
necessary and sufficient that

(1) supp p+ n supp p~ ^ 0.

PROOF. To prove necessity we first assume that supp//+ A supp//- = 0. Let

/ G C(X) be such that /|8upPM+ =1, /|SUpPM- — 1- ^Wf-g/H < 1, then g should

be positive on supp//+ and negative on supp//" (since h is strictly positive). Then

p+(g) > 0 and p~(g) < 0, since //+ and p~ are positive measures, and hence g <£ H.

To prove sufficiency, let xo G supp//+ fl supp//-, and let / be an arbitrary

function from C(X). For e > 0 let U be a neighborhood of xo such that |(/(xo) —

/(x))| < e/2 for all x G U. By the Lemma, there are functions p>i,p>2 G 7(U)

such that a = p(<pi) > 0, b = p(<p2) < 0. We claim that there exists a function

<p G 7(U) n H with ip(xo) > 0. Indeed, pick any 7 G 7(U) with 7(2:0) = 1 and
let r = p(l). If r < 0, then let <p = a(a - r)"1 • 7 - r(a - r)_1 • <pi\ if r > 0,

let p = r(r — 6)_1 • p2 — b(r — £>)-1 ■ 7. In any case it follows that p(<p) = 0 and

P G 7(U).
Let £»(2:0) = P > 0. Let W C U be a neighborhood of xo such that p¡w > p/2.

Using the same argument as above, we obtain a function i/> G 7(W) such that

p(ip) — -//(/); i.e., f + tp G H. Clearly, for an arbitrary integer N the function

= / + ^ + JV-/(xq)<P
1 + JVrp

Pick iV > (4||i/)|| - 2e)/(ep). We obtain the inequality ||/ - r|| < e, since

(1) For x £ U, we have |/(x) - r(x)| = 0.

(2) x G /7\VK implies

|/w-r(^i5l)|/(i)-/w^'
(3) x G VF yields

l/W-''Wliîf^î)l/w-/wl + îf^

s5 + TtSt2££-  a
We now obtain two easy generalizations of Theorem 1.   In the first we drop the

assumptions about the constants.

THEOREM 2. Let H = {/ G C(X): //(/) = 0} for some p G M(X). Then
R(H) is dense in C(X) iff condition (1) holds.

PROOF. Condition (1) guarantees the existence of a strictly positive function

<p G H: Indeed, let r = p(u), where u denotes the constant function with value

1.  From the Lemma (with U = X) we conclude that there is a positive function
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pi with p(<pi) = —r. The function p — u + px will be strictly positive, and this

function belongs to H. Consider the hyperplane Hv = {f/p: f G H}. Then

H„ = {fGC(X):pi(f) = 0},

where //1 — p>-p. It is easy to see that p\ — p>p+, //¡~ — p-p~ and 1 = p/p G H^.

Hence supp//]*" nsupp/Zj" = supp//+ flsupp//- ^ 0, and by Theorem 1, i2(i/<p) =

C(X).  Therefore for every e > 0 and / G C(X), there exist g, h G H such that

||/ - (g/p>)/(h/p)\\ < e, or, equivalently, ||/ - g/h\\ < e.    D
Another obvious generalization of Theorem 1 is as follows.

THEOREM 3. Let M be a finite subset of M(X) such that for any distinct

p,v G M, supp// n suppv = 0. Let H = {/ G C(X): //(/) = 0 V // G M}. Then
R(H) is dense in C(X) iff, for every p G M, condition (1) holds.    D

We now give some examples for Theorem 2.

EXAMPLES. Consider the subspaces

Hi=Hi(a,b) = ifGC([0,l}): j* f dx = f  f dx\ ,

for some a, b G (0,1),

H2=H2(p) = ffGC(\0,l]):J  f-pdx = o]

p G C{([0,1])}, where {r: <p(r) = 0} has no interior points,

H3(j) = spim{coak0}%LOtkjij c C([0,tt]).

From Theorem 2 we have

R{Hi) = C{[0,l])   iff a-6,

R(H2) = C([0,1])    iff <p changes sign on [0,1],

Rjïh) = c([o,7r})  iffjvo.

The last example follows from the second example and the fact that H¡(j) is

dense in the hyperplane

H=ífeC([0,n]):   Í   f{6)cmj0d0 = O
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