ON APPROXIMATION BY RATIONALS FROM A HYPERPLANE GERHARD GIERZ AND BORIS SHEKHTMAN

Abstract

Let $E \subset C(K)$ be a subspace of continuous functions defined on a compact Hausdorff space K. We characterize those subspaces of codimension 1 for which the rational functions with denominators and enumerators from E are dense. The condition for the density of this very nonlinear set of functions turns out to be a linear separation condition.

A number of recent discoveries in approximation theory indicated some almost supernatural powers of rational approximation (see [1]). That is, starting with a linear subspace $H \subset C([0,1])$, the set of rational functions with the numerator and the denominator in H seems to have density properties disproportionate to its share.

In this note we present the necessary and sufficient condition for the density of such rationals when H is a hyperplane in a $C(X)$-space. Surprisingly enough the condition for the density of this nonlinear set of functions turns out to be a (very linear in spirit) separation condition.

We will need some notation: Let X denote a compact Hausdorff space; $C(X)$ the set of all continuous real-valued functions on $X ; \mathcal{M}(X)$ the space of all regular Borel measures on X. The elements from $\mathcal{M}(X)$ are identified with the continuous functionals on $C(X)$. As usual, we define the support supp f of a continuous function $f \in C(X)$ to be the closure of the set $\{x \in X: f(x) \neq 0\}$; the support of a measure μ on X is defined to be the smallest closed set $A \subset X$ such that $\operatorname{supp} f \subset X \backslash A$ implies $\mu(f)=0$. If U is a subset of X, we let

$$
\mathcal{F}(U)=\{f \in C(X): \operatorname{supp} f \subset U, f \geq 0\} .
$$

For every $\mu \in \mathcal{M}(X)$ we use $\mu=\mu^{+}-\mu^{-}$to denote the orthogonal decomposition of μ (i.e., $\mu^{+} \wedge \mu^{-}=0$). Recall that for every pair of measures $\mu, \nu \in \mathcal{M}(X)$ their infimum is given by

$$
(\mu \wedge \nu)(f)=\inf \{\mu(g)+\nu(h): 0 \leq g, h, g+h=f\},
$$

where $f \in C(X)$ is positive (see [2, p. 72]). Let $H=\{f \in C(X): \mu(f)=0\}$ for some $\mu \in \mathcal{M}(X)$. Let

$$
R(H)=\left\{g h^{-1}: g, h \in H ; h(x)>0 \forall x \in X\right\} .
$$

Lemma. Let $\mu \in \mathcal{M}(X)$ and let U be an open subset of X such that $\operatorname{supp} \mu^{+} \cap$ $U \neq \varnothing \neq \operatorname{supp} \mu^{-} \cap U$. Then we can find functions $\varphi_{1}, \varphi_{2} \in \mathcal{F}(U)$ such that $\mu\left(\varphi_{1}\right)<0<\mu\left(\varphi_{2}\right)$.

Proof. Suppose φ_{1} does not exist. Then for all $g \in \mathcal{F}(U)$ we would have $\mu(g) \geq 0$; i.e., $\mu^{+}(g) \geq \mu^{-}(g)$. If $f \in \mathcal{F}(U)$, and if $f=g+h$ for positive functions

Received by the editors January 14, 1985 and, in revised form, April 15, 1985.
1980 Mathematics Subject Classification. Primary 41A20.
g and h, then $g, h \in \mathcal{F}(U)$. Thus $\mu^{+}(g)+\mu^{-}(h) \geq \mu^{-}(g+h)=\mu^{-}(f)$. Hence the above explicit expression for $\mu^{+} \wedge \mu^{-}$yields $0=\left(\mu^{+} \wedge \mu^{-}\right)(f) \geq \mu^{-}(f) \geq 0$ for all $f \in \mathcal{F}(U)$. This would imply $\mu^{-}(f)=0$ whenever $\operatorname{supp} f \subset U$; i.e., supp $\mu^{-} \subset$ $X \backslash U$, contradicting $\varnothing \neq U \cap \operatorname{supp} \mu^{-}$.

The proof of the existence of φ_{2} is similar.
ThEOREM 1. Let $1 \in H$. For the set $R(H)$ to be dense in $C(X)$, it is both necessary and sufficient that

$$
\begin{equation*}
\operatorname{supp} \mu^{+} \cap \operatorname{supp} \mu^{-} \neq \varnothing \tag{1}
\end{equation*}
$$

Proof. To prove necessity we first assume that $\operatorname{supp} \mu^{+} \wedge \operatorname{supp} \mu^{-}=\varnothing$. Let $f \in C(X)$ be such that $\left.f\right|_{\text {supp } \mu^{+}}=1,\left.f\right|_{\text {supp } \mu^{-}}-1$. If $\|f-g / h\|<1$, then g should be positive on $\operatorname{supp} \mu^{+}$and negative on supp μ^{-}(since h is strictly positive). Then $\mu^{+}(g)>0$ and $\mu^{-}(g)<0$, since μ^{+}and μ^{-}are positive measures, and hence $g \notin H$.

To prove sufficiency, let $x_{0} \in \operatorname{supp} \mu^{+} \cap \operatorname{supp} \mu^{-}$, and let f be an arbitrary function from $C(X)$. For $\varepsilon>0$ let U be a neighborhood of x_{0} such that | $\left(f\left(x_{0}\right)-\right.$ $f(x)) \mid<\varepsilon / 2$ for all $x \in U$. By the Lemma, there are functions $\varphi_{1}, \varphi_{2} \in \mathcal{F}(U)$ such that $a=\mu\left(\varphi_{1}\right)>0, b=\mu\left(\varphi_{2}\right)<0$. We claim that there exists a function $\varphi \in \mathcal{F}(U) \cap H$ with $\varphi\left(x_{0}\right)>0$. Indeed, pick any $\gamma \in \mathcal{F}(U)$ with $\gamma\left(x_{0}\right)=1$ and let $r=\mu(\gamma)$. If $r<0$, then let $\varphi=a(a-r)^{-1} \cdot \gamma-r(a-r)^{-1} \cdot \varphi_{1}$; if $r>0$, let $\varphi=r(r-b)^{-1} \cdot \varphi_{2}-b(r-b)^{-1} \cdot \gamma$. In any case it follows that $\mu(\varphi)=0$ and $\varphi \in \mathcal{F}(U)$.

Let $\varphi\left(x_{0}\right)=\rho>0$. Let $W \subset U$ be a neighborhood of x_{0} such that $\varphi_{\mid W} \geq \rho / 2$. Using the same argument as above, we obtain a function $\psi \in \mathcal{F}(W)$ such that $\mu(\psi)=-\mu(f)$; i.e., $f+\psi \in H$. Clearly, for an arbitrary integer N the function

$$
r=\frac{f+\psi+N \cdot f\left(x_{0}\right) \varphi}{1+N \varphi} \in R(H)
$$

Pick $N \geq(4\|\psi\|-2 \varepsilon) /(\varepsilon \rho)$. We obtain the inequality $\|f-r\| \leq \varepsilon$, since
(1) For $x \notin U$, we have $|f(x)-r(x)|=0$.
(2) $x \in U \backslash W$ implies

$$
|f(x)-r(x)|=\frac{N \varphi(x)}{1+N \varphi(x)}\left|f(x)-f\left(x_{0}\right)\right| \leq \frac{\varepsilon}{2}
$$

(3) $x \in W$ yields

$$
\begin{aligned}
|f(x)-r(x)| & \leq \frac{N \varphi(x)}{1+N \varphi(x)}\left|f(x)-f\left(x_{0}\right)\right|+\frac{\|\psi\|}{1+N \rho / 2} \\
& \leq \frac{\varepsilon}{2}+\frac{\|\psi\|}{1+N \rho / 2} \leq \varepsilon .
\end{aligned}
$$

We now obtain two easy generalizations of Theorem 1. In the first we drop the assumptions about the constants.

Theorem 2. Let $H=\{f \in C(X): \mu(f)=0\}$ for some $\mu \in \mathcal{M}(X)$. Then $R(H)$ is dense in $C(X)$ iff condition (1) holds.

Proof. Condition (1) guarantees the existence of a strictly positive function $\varphi \in H$: Indeed, let $r=\mu(u)$, where u denotes the constant function with value 1. From the Lemma (with $U=X$) we conclude that there is a positive function
φ_{1} with $\mu\left(\varphi_{1}\right)=-r$. The function $\varphi=u+\varphi_{1}$ will be strictly positive, and this function belongs to H. Consider the hyperplane $H_{\varphi}=\{f / \varphi: f \in H\}$. Then

$$
H_{\varphi}=\left\{f \in C(X): \mu_{1}(f)=0\right\}
$$

where $\mu_{1}=\varphi \cdot \mu$. It is easy to see that $\mu_{1}^{+}=\varphi \mu^{+}, \mu_{1}^{-}=\varphi \cdot \mu^{-}$and $1=\varphi / \varphi \in H_{\varphi}$. Hence supp $\mu_{1}^{+} \cap \operatorname{supp} \mu_{1}^{-}=\operatorname{supp} \mu^{+} \cap \operatorname{supp} \mu^{-} \neq \varnothing$, and by Theorem $1, \overline{R\left(H_{\varphi}\right)}=$ $C(X)$. Therefore for every $\varepsilon>0$ and $f \in C(X)$, there exist $g, h \in H$ such that $\|f-(g / \varphi) /(h / \varphi)\|<\varepsilon$, or, equivalently, $\|f-g / h\|<\varepsilon$.

Another obvious generalization of Theorem 1 is as follows.
THEOREM 3. Let M be a finite subset of $\mathcal{M}(X)$ such that for any distinct $\mu, \nu \in M, \operatorname{supp} \mu \cap \operatorname{supp} \nu=\varnothing$. Let $H=\{f \in C(X): \mu(f)=0 \forall \mu \in M\}$. Then $R(H)$ is dense in $C(X)$ iff, for every $\mu \in M$, condition (1) holds.

We now give some examples for Theorem 2.
Examples. Consider the subspaces

$$
H_{1}=H_{1}(a, b)=\left\{f \in C([0,1]): \int_{0}^{a} f d x=\int_{b}^{1} f d x\right\}
$$

for some $a, b \in(0,1)$,

$$
H_{2}=H_{2}(\varphi)=\left\{f \in C([0,1]): \int_{0}^{1} f \cdot \varphi d x=0\right\}
$$

$\varphi \in C\{([0,1])\}$, where $\{\tau: \varphi(\tau)=0\}$ has no interior points,

$$
H_{3}(j)=\operatorname{span}\{\cos k \theta\}_{k=0, k \neq j}^{\infty} \subset C([0, \pi])
$$

From Theorem 2 we have

$$
\begin{array}{ll}
\overline{R\left(H_{1}\right)}=C([0,1]) & \text { iff } a=b, \\
\overline{R\left(H_{2}\right)}=C([0,1]) & \text { iff } \varphi \text { changes sign on }[0,1], \\
\overline{R\left(H_{3}\right)}=C([0, \pi]) & \text { iff } j \neq 0 .
\end{array}
$$

The last example follows from the second example and the fact that $H_{3}(j)$ is dense in the hyperplane

$$
H=\left\{f \in C([0, \pi]): \int_{0}^{\pi} f(\theta) \cos j \theta d \theta=0\right\}
$$

References

1. D. J. Newman, Approximation with rational functions, CBMS Regional Conf. Ser. in Math., no. 41, Amer. Math. Soc., Providence, R. I., 1979.
2. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974.

Department of Mathematics, University of California, Riverside, CaliforNIA 92521

