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A PARTIAL INTEGRATION FORMULA

FOR PRODUCT INTEGRALS

OF UNBOUNDED OPERATOR-VALUED FUNCTIONS

RHONDA J. HUGHES

Abstract. The partial integration formula for product integrals

P|y<«'>+**»* = f[eA{'v'f[txpi \f\eAW'l"B(s)f\eM")J" \ds\,

of which the Trotter product formula is a consequence, is established for a wide class

of unbounded operator-valued functions A(s). B(s).

In [6, 7], Masani discusses the relationship between the "partial integration

formula" for product integrals and the Trotter product formula, deriving the latter

from the former for bounded operator-valued functions. He also asks whether an

analogous relationship (from which Trotter's formula for unbounded operators

would follow) can be established for unbounded operator-valued functions. In this

note we address this question, providing conditions under which a partial integration

formula for unbounded operators is valid, and exploring its implications for the

Trotter product formula. We now describe our main results.

Let X be a Banach space, and let ^(X) denote the set of closed linear operators

on X. Set

(i)    for each s e [0, t], A(s) is the

infinitesimal generator of a

contraction semigroup,

(ii)     0e    fl   P(A(s)),
s<S[0,t]

(iii)     the A(s) have a common dense domain

D, and

(iv)     A(s) is strongly C1 on D.

It was first shown by Kato (cf. [5], also [2, Theorem 12, 3, Theorem 6.1, p. 112, 9,

p. 430]) that for A(-) e Jf, the product integral

Jf= A(-): [0,ï]-«-(X)

UA(t,Q) = \\eA{s)ds = i-lim fl exp( A
0 B-»00    k"l

(k- l)t\l
n
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exists; in fact, the product integral UA(x, y) converges for all x, y <e [0, r], y < x,

UA(x, y)D c D, and

j¿UA(x, y)<b = A(x)UA(x, y)<b, UA(y, y)<b = <p,

for ail § e D, 0 < y < x. Moreover, UA(x, y) is a contraction on X for 0 < y < x,

and the propagator identity UA(x, r)UA(r, y) = UA(x, y) holds for 0 < y < r < *.

Remark. Assumptions (i)-(iv) in the definition of Jf imply the existence of a

convergent product integral for A(s) — I; multiplying that product integral by ex~y

then gives rise to the product integral of A(s) (cf. [2, p. 344]). In fact, in (ii), 0 may

be replaced by any X for which A(s) — XI satisfies the remaining assumptions. We

then prove:

Theorem 1. Let A(-) e Jf, and for each s e [0, f], let B(s) be the infinitesimal

generator of a contraction semigroup, such that C(s) = A(s) + B(s) also belongs to

Jf, with common dense domain D. Then

(k- \)t\ t
n

Uc(t,0) = i-lim  fl UA(kt/n, (k - l)í/«)exp( B

Theorem 2. In addition to the hypotheses of Theorem 1, assume that for each s,

D(A(s)) c D(B(s)), and A(s) is the infinitesimal generator of a strongly continuous

group of contractions. Then the partial integration formula

(*)       Yle(A(s) + B(s))äs m Y[eA^uUuYY exp \\YleAiu)duB(s)fleAiu)du ) ds)

0 0 0 \\   J 0 /       /

holds.

As corollaries, we obtain (*) if, in addition to the hypotheses of Theorem 1, all the

operators in question are skew-adjoint (Corollary 1), or if A(s) G Jf, and B(s) is

bounded, dissipative, and strongly C1 (Corollary 2).

To clarify the ideas, let us first consider the case where A(-): [a,b] -» B(X) is

continuous in the strong operator topology. Then the (strong) product integral
x n

Y[eMs)Js = s-Yim  \~\eA^^s"
y «^=o   i = l

exists for all x, y e [a, b]\ here y = s0 < sx < ■ ■ ■ < srl = x, hsk = sk-sk_1, and

sk g [í/fc_i, sk] (cf. [2, Theorem 1, Corollary 2]). Now, assume that, in additon, B(-):

[a, b] -» B(X) is strongly continuous. Then the partial integration formula (or sum

rule; cf. [2, Theorem 8, 3, Theorem 5.5]) holds:

(1)      f[e(A(sy+B(s»d, = f[e*WsfY exp| i Y[e*<")d«B(s)fleAwdu) ds).
y y y        \\  s y I     I

Note.   Part   of   the   conclusion   of   (1)   is   that   the   product   integral   of

I\>seA{u)duB(s)Y\syeA{u)äu exists; here Y\sveA{u)du is invertible, and {Y\sveMu)duyl =

r\y gA(u)du

The Trotter product formula,

é>í(/f + S)=   ]jm   /et/nAet/mB\*
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«H'l^H

then follows easily from (1), via the intermediate formula

(2) Yle(AU') + B(s))iJi = s-lim  fleA(h)*neB(h)*s^
y n-»oo   k"l

and the trivial fact that BleAB = eB AB, for bounded operators A and B, with

B   l bounded. (To obtain (2), reverse the roles of A(s) and B(s) in (1).)

To some extent, Masani's question about unbounded operators is answered by

earlier work of Faris (cf. [4]), who establishes a version of (2) for (unbounded)

contraction semigroup generators A(s) and B(s), provided some technical condi-

tions are satisfied.

Faris proves

m rj.Mw.— .jjj. n «pj^liH»!1^)^
provided basically that for each je[0,/], C(s) = A(s) + B(s) is closed, and

possesses a convergent product integral. Although our ultimate goal is to establish a

partial integration formula from which, for example, (2') would follow, it is

expeditious to work backwards, generalizing Faris's formula first. More precisely,

suppose that instead of (2'), we could establish the following (which, in fact,

corresponds to Corollary 2.6 in [7]): (let x = 0, y = t)

t n    I      kt/n \

(3) Yle(A(sy+B(s))ds = 5-lim n       11    eAlu)du
0 n-»oo   k = l\ (k-V)t/n j

Proceeding formally, the right-hand side of (3) may be written (with sk = kt/n) as

t n    I   0 ía--i \

i-lim Y[eA(')d'Y[    HeAiu)dueB^->)A^Y\eMu)du

n-nx     0 k = l\sk_1 0

t n j    0 .Va-i \

(4) = s-lim Y\eA(s)ds FI exp   Yl eA(u)duB(sk_1) Y\ eAU4)duAsk
"^°c     0 A = l \sk-t 0 /

= \\eA^dut[txÂl\eA(u)duB(s)f\eA^duds
0 0 \   ,y 0

which is (1). Therefore, following the program suggested above, we shall first

establish (3); then, in cases where the above formal calculation (4) may be made

rigorous, we will show that Masani's question has an affirmative answer. Now, for

the details.

Proof of Theorem 1. Following the standard proofs of the existence of product

integrals for elements of Jf (cf. [2, Theorem 12, and 9, p. 430]), we introduce the

family of operators

WA(t,s) = A(t)UA(t,s)A(Sy\

(Remark. Although the product integrals in [2] and [5] are defined differently, they

are in fact identical by virtue of their being solutions of the same initial value

problem.) Using Dollard and Friedman's approach (cf. [2, p. 350]) we see that
oo

WA{t,s)= E Ujn)(t,s),   where Uj¡0)(t, s) = UA(t,s),
n = 0
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and

U\"\t,s)= f UA(t,u)(-C(u))U<"-l)(u,a)du,

where C(u) = A(u) ■(A(u)    ),

which turns out to be strongly continuous for A(-) g JT (cf. [2, Theorem 12,

Corollary 1]). Moreover, WA(t,s) is jointly strongly continuous, and (trivially)

satisfies the relation A(t)UA(t, s) = WA(t, s)A(s). Now, we proceed as in [4], setting

for 1 < k < n, and h = t/n,

Pk=UA(kh,(k-l)h),

Q    = ßUk-l)h)h

Rk= Uc(kh,(k- \)h),   and

S„= T\PkQk-uc(t,o).

Then for 4> <e D,
k = i

(5) ||5,¿| Y\PkQk- Y\rM
k = \

n n

-k 11"(
k = \

<E    E   \PkQk[P¡Qj-R,]R{(j-\)h,Q)*\
7=1k-j+l

0< j< ;

< t

n   sup  \\[uA(s + h,s)eB(s)h - Uc(s + h,s)]Uc($,0)<i>|

l[UA(s + h,s)-l]-A{s)Usup
0<s<r

+   sup
0 < s < /

+   sup
Os¡í«r

UA(s + h,s)^[e«*»-I)-B{s))*

-[Uc(s + h,s)-l] -C(s)U

where Jf= {Uc(s, 0)<f>, 0 < s < t}, so that Jfc £). We must show that each of these

terms converges to zero, as n -* oo. For the first term on the right, we have, for

<t> g £>,

(6) ^[^(5 +ft,*)-/]*-/!(*)*   =   -j¡fS+h A(u)UA(u,s)4>-A(s)<¡>du

P"1    I^(íí,j)^(s)^ - A(s)c¡>du
1    As + /i

fti,

<     sup     ||[í^(«,í)-/]^(j)*|
îssuîss + a

Clearly for fixed s, the latter approaches zero as h -» 0, for ^(s, s) = / and

WA(u, s) is strongly continuous. However, the convergence is uniform in s; indeed,

for 4> g X, ||W^(i + h, s)<f> - <p\\ -> 0 as ft -» 0, uniformly in 5, by compactness of
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[0, r]. Moreover,

\\WA(s + h,s)<¡>\ UA(s + h,s)4>+ £ t/jn)(s +A,j)<f>
n-l

11//  (      4.*        \All4-    V     // + *HC(»)N«

n = 1

<IIAI
m-ftiK.il

where ||C(u)|| < M, by strong continuity, so \\WA(s + ft, s)|| are uniformly bounded

for, say 0 < ft < 1. Since [A(s)<b: 0 < s < /} is compact in A", the convergence in

(6) is uniform in 5 (cf. [4, Lemma 1]). That the convergence is uniform on Jf follows

precisely as in Faris's proof, by using the uniform boundedness theorem for the

operators (\/h)[UA(s + h,s) - I] and A(s) on B(D, X), where D is regarded as a

Banach space, with the graph norm of any C(s) (cf. [4, Proposition 1]).

The convergence of the remaining terms in (5) is proved by observing that for

<í> g D,

(7) UA(s + h,s)-^[eBis)h - I]4> - B(s)<b

\ (h UA(s + h,s)eB(s)uB(s)<t>- B(s)<j>du
ft Jr,

<   sup   \\UA(s + ft, s)eB{s)uB(s)<t>- B(s)<t>\

=   sup   \\UA(s + ft, s)(eB{s)"B(s)<j> - B(s)cj>)

+ UA(s + h,s)B(s)<j> - B(s)<t>\\.

Now for <}> g X, UA(s + ft, s)<b -» <b as ft —► 0, uniformly in s (strong continuity and

compactness of [0, ']), and clearly eB{s)"<}> -* <i> uniformly in j as ft -» 0. Since B(s)(b

is a compact set in X, and \\UA(s + ft, s)|| < 1 for all s and ft, the last term in (7)

approaches zero as ft -» 0, uniformly in 5. (Note that B(s)cb is continuous for

5 g [0, f] and <f> g £>, for A(s), C(s) g jf.)

Again applying uniform boundedness, we see that the convergence is uniform for

tp G Jf, as well. Finally, the last term in (5) approaches zero as ft -» 0, for

-r[Uc(S-rh,s)-lU-C(sU -fS"' C(u)Uc(u,s)t- C(s)^du

j-f"' fVc(u,s)C(s)\f>- C{s)idu 0    as ft -» 0,

uniformly in 5, as already observed for WA. This completes the proof of Theorem 1.

Next, we determine conditions under which a partial integration formula is valid.

Returning to the formal computation in (4), we see that it is now correct, provided
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the conditions of Theorem 1 are satisfied and, in addition,

(i) Us0eA(u)du is invertible, with (bounded) inverse Y\0seA(u)du, and

(ii) for each s, Yl°s eAt~u)duB(s)U°s eA{u)d" (or its closure) generates a contraction

semigroup.

For example, (i) will hold if, in addition, A(s) generates, for each s, a strongly

continuous group (apply the theorem on existence of product integrals to A(s) and

— A(s)), and (ii) will be valid provided DA (the common domain of the y4(i)'s—re-

call A(-) g jf) is contained in the domain of B(s) for each 5. Then it is easy to see

that n°eA(u)d"B(s)Us0eA(u)du is closed, densely-defined, and generates the contrac-

tion semigroup Y\°s eAiu)dueB(s)Us0eA(u)du. Observing that (4) is valid under these

conditions, we note that we have proved Theorem 2. In addition, we have:

Corollary 1. Formula (8) holds in the event A(s), B(s) and A(s) + B(s) are all

skew-adjoint, satisfy the hypotheses of Theorem 1 and D(A(s)) c D(B(s)).

Proof. The proof is immediate, taking into account the remark following the

definition of Jf.

Corollary 2. Assume A(s) g Jf, and B(s) is for each s g [0,/] a bounded

dissipâtive operator on X, and B(s) is strongly Cl for s G [0, r]. Then A(s) + B(s) G

Jf", and formula (8) holds.

Proof. Clearly A(s) + B(s) g jf, andll°eA(u)duB(s)U¡0eA{u)du is closed.

In conclusion, we note that our Theorems 1 and 2 may be applied in the following

situations: let X = L2(R"), n > 1, A(t) = z'A, where A is the selfadjoint Laplacian,

and B(t) is the operation of multiplication by iV(x,t), where V(x, t) is a real-

valued measurable function on R"X[a,b] and, for each t, V(x, t) G LP(R"),

where p > n/1 if n > 5, p > 2 if n = 4, and p > 2 if n = 1, 2 or 3 (cf. [4]).

Additionally, assume that V(-, t)<b(-) is a C1 function of / for each <p g D(A). For

example, as is shown in [4, p. 103], the latter is the case provided p is in the range

described above, that V(x, t) is C1 in t for each x, and |(3F/9/)(x, t)\ < 4>(x) for

some function <p g LP(R").

More generally, we may weaken the hypotheses of Theorems 1 and 2 in an

obvious way, assuming, for example, that our operator-valued functions belong to a

larger class, such as L\ (cf. [2]). Correspondingly, in the example considered above,

V(t) may be any selfadjoint operator that is, for each t, a small perturbation of A,

such that V(t)<b belongs to the appropriate class (say L\) for each <p g D(A).
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