INVARIANT SUBSPACES FOR ALGEBRAS OF SUBNORMAL OPERATORS

JAMES E. THOMSON¹

ABSTRACT. Every rationally cyclic subnormal operator has a hyperinvariant subspace.

A bounded linear operator on a Hilbert space is defined to be subnormal if it is the restriction to an invariant subspace of a bounded normal operator. S. W. Brown [4] proved that every subnormal operator has a nontrivial invariant subspace. An idea in his proof leads to a stronger theorem, whose proof is easier.

THEOREM. Let μ be a compactly supported positive measure on the complex plane C. Let H be a closed subspace of $L^2(\mu)$ with $1 \in H$. Let A be a subalgebra of $L^{\infty}(\mu)$ containing the function z such that $AH \subset H$. Then there exists a nontrivial closed subspace K of H such that $AK \subset K$.

Before proving the theorem, we will point out some consequences. A subnormal operator S on a space H is rationally cyclic if there exists a vector x in H such that the set $\{r(S)x: r \in \text{Rat}(\sigma(S))\}$ is dense in H, where $\text{Rat}(\sigma(S))$ denotes the algebra of rational functions with poles off the spectrum of S.

For each such S, there exists a measure μ such that S is unitarily equivalent to multiplication by z on $R^2(\sigma(S), \mu)$, the closure in $L^2(\mu)$ of $Rat(\sigma(S))$ [5, p. 146]. Under this representation each operator that commutes with S is represented by multiplication by a function in $R^2(\sigma(S), \mu) \cap L^{\infty}(\mu)$, and conversely [5, p. 147]. A subspace invariant for every operator that commutes with S is called hyperinvariant. If we let $H = R^2(\sigma(S), \mu)$ and $A = R^2(\sigma(S), \mu) \cap L^{\infty}(\mu)$ in the theorem, then we obtain a hyperinvariant subspace.

COROLLARY 1. Every rationally cyclic subnormal operator has a hyperinvariant subspace.

The following is a trivial consequence of Corollary 1.

COROLLARY 2. Every subnormal operator S has a subspace invariant for the algebra $\{r(S): r \in \text{Rat}(\sigma(S))\}$.

Received by the editors April 7, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47B20.

Key words and phrases. Subnormal operators, invariant subspaces.

¹Research supported in part by a grant from the National Science Foundation.

An excellent general reference for subnormal operators is the book by J. B. Conway [5]. J. E. Brennan [1-3] has worked extensively on rationally invariant subspaces, and the author has found that work instructive.

PROOF OF THE THEOREM. If $H = L^2(\mu)$, then let K = fH, where f is a nontrivial characteristic function.

Assume $H \neq L^2(\mu)$. Then there exists a nonzero function g in $L^2(\mu)$ such that $\int fg \, d\mu = 0$ for every f in H. Let p = 3 and q = 3/2 for the remainder of this paper. By [1] and [5, p. 316] there exists a point w in C such that $g(z)(z - w)^{-1}$ is in $L^q(\mu)$, $\mu(\{w\}) = 0$ and

$$\int g(z)(z-w)^{-1}d\mu(z)\neq 0.$$

Fix such a point w.

Let $A^p(\mu)$ denote the closure in $L^p(\mu)$ of A. Note that $A^p(\mu) \subset H$. Define a bounded linear functional L on $A^p(\mu)$ by

$$L(f) = \int f(z)g(z)(z-w)^{-1}d\mu(z)$$

for f in $A^p(\mu)$. By the Hahn-Banach theorem there exists a norm-preserving extension of L to $L^p(\mu)$. This extension is represented by a function h in $L^q(\mu)$ with $\|h\|_{\alpha} = \|L\|$. That is,

$$L(f) = \int fh \, d\mu$$

for each f in $A^p(\mu)$. Since the closed unit ball of $A^p(\mu)$ is weakly compact, there exists a function r in $A^p(\mu)$ with $||r||_p = 1$ and L(r) = ||L||. Thus,

$$||h||_q = ||L|| = L(r) = \int rh d\mu \leq ||r||_p ||h||_q = ||h||_q.$$

The equality in Holder's inequality above implies that

$$|r|^p = a|h|^q$$
 a.e. (μ)

for some positive constant a, or

$$|r|^2 = b|h|$$
 a.e. (μ)

for some positive constant b.

Let x = h/r on the set where r is nonzero, and zero elsewhere. The function x is in $L^2(\mu)$ because

$$\int |x|^2 d\mu = \int |h|^2 |r|^{-2} d\mu = b^{-1} \int |h| d\mu < \infty.$$

Let K be the closure of the linear manifold (z - w)Ar. Clearly $AK \subseteq K$. For each f in A,

$$\int (z - w) frx d\mu = \int (z - w) fh d\mu$$

$$= \int (z - w) f(z) g(z) (z - w)^{-1} d\mu(z)$$

$$= \int fg d\mu = 0.$$

But r is in H and

$$\int rx \, d\mu = \int h \, d\mu = \int g(z)(z-w)^{-1} \, d\mu(z) \neq 0.$$

Thus K is a proper subspace of H.

REMARK. In the proof above, if A is the algebra of polynomials (similarly for rational functions), then there exists a constant c such that $f(w) = (fr, c\overline{x})$ for every polynomial f, where (,) denotes the standard inner product on $L^2(\mu)$. The idea of using factorization to obtain point evaluation is due to Brown [4]. The fact that there are $L^p(\mu)$ -continuous point evaluations is due to Brennan [1]. The original contribution of this paper is the method for combining those ideas.

REFERENCES

- 1. J. E. Brennan, Invariant subspaces and rational approximation, J. Funct. Anal. 7 (1971), 285-310.
- 2. _____, Invariant subspaces and weighted polynomial approximation, Ark. Mat. 11 (1973), 167-189.
- 3. _____, Point evaluations, invariant subspaces and approximation in the mean by polynomials, J. Funct. Anal. 34 (1979), 407-420.
- 4. S. W. Brown, Some invariant subspaces for subnormal operators, Integral Equations Operator Theory 1 (1978), 310-333.
 - 5. J. B. Conway, Subnormal operators, Pitman, Boston, Mass., 1981.

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKS-BURG, VIRGINIA 24061