THE MAXIMUM MODULUS PRINCIPLE FOR CR FUNCTIONS

ANDREI IORDAN

ABSTRACT. Let M be a CR submanifold of C'' without extreme points. Then, the modulus of any CR function on M cannot have a strong local maximum at any point of M.

Preliminaries. Let M be a smooth manifold embedded as a locally closed real submanifold of \mathbb{C}^n . We denote by $\bar{\partial}_M$ the tangential Cauchy-Riemann operator on M induced by the Cauchy-Riemann operator $\bar{\partial}$ on \mathbb{C}^n and with $\mathrm{HT}_p(M)$ the holomorphic tangent space to M at a point $p \in M$.

Let us recall some of the definitions and results of [4].

DEFINITION 1. $\bar{\partial}_M$ obeys the local maximum modulus principle on M if given any open connected set U in M and any u differentiable in U such that $\bar{\partial}_M u = 0$ on U, then u cannot have a (weak) local maximum at any point of U unless u is constant on U.

DEFINITION 2. We call a point $p \in M$ an extreme point of M if there exists a local holomorphic coordinate system $z = (z_1, \ldots, z_n)$ in a neighborhood U of p such that z(p) = 0 and $M \cap U \subset \{z | y_1 \ge 0\}$. Here we assume that locally near p, M is not contained in any \mathbb{C}^k for k < n.

DEFINITION 3. (i) For any $p \in M$ and $X \in \mathrm{HT}_p(M)$ set Z = X - iY, where $Y = JX \in \mathrm{HT}_p(M)$ and J is the multiplication with $(-1)^{1/2}$ which defines the complex structure on \mathbb{R}^{2n} .

The Levi form at p assigns to Z the normal vector $L_p(Z)$ defined by $L_p(Z) = B_p(X, X) + B_p(Y, Y)$, where B_p is the second fundamental form of M at p.

(ii) We denote $N_p(M)$ as the normal space of M at p.

For any $\xi \in N_p(M)$ the map L_p^{ξ} defined by $L_p^{\xi}(Z) = \langle L_p(Z), \xi \rangle$ is called the Levi form of M at p in the ξ direction. Here \langle , \rangle represents the real inner product in \mathbb{R}^{2n} .

We assume that p=0 and $\operatorname{codim}_{\mathbf{R}} M=q$. Then in a neighborhood U of the origin there are smooth real functions ρ_1,\ldots,ρ_q such that $d\rho_1\wedge\cdots\wedge d\rho_{q|0}\neq 0$ and

$$M \cap U = \left\{ z \in U | \rho_1(z) = \cdots = \rho_q(z) = 0 \right\}.$$

We may assume that $d\rho_1(0), \ldots, d\rho_a(0)$ are orthonormal.

Received by the editors September 27, 1984 and, in revised form, March 13, 1985. 1980 Mathematics Subject Classification. Primary 32F25.

If $\xi \in N_0(M)$, then $\xi = \sum_{i=1}^q \xi_i d\xi_i(0)$ and if $Z = \sum_{j=1}^n w_j (\partial/\partial z_j) \in \mathrm{HT}_0(M)$, then $\sum_{j=1}^n (\partial \rho_j/\partial z_j)(0)w_j = 0$ for $1 \le i \le q$.

In these conditions

$$L_0^{\xi}(Z) = -4 \sum_{i,j,k} \xi_i \frac{\partial^2 \rho_i}{\partial z_j \partial \bar{z}_k} (0) w_j \bar{w}_k \qquad [4].$$

In [4] the following results are proved.

PROPOSITION 1. If p is an extreme point of M, then there exists a normal direction $\xi \in N_p(M)$ such that L_p^{ξ} is positive definite.

PROPOSITION 2. If for a point $p \in M$ there exists $\xi \in N_p(M)$ such that L_p^{ξ} is strictly positive definite, then p is an extreme point of M.

Theorem 1. If $\bar{\partial}_M$ obeys the local maximum modulus principle on M, then M can contain no extreme point.

In [4], it is conjectured that the converse of Theorem 1 is also true.

Statement of results. A submanifold M of \mathbb{C}^n is called a CR manifold if $\dim_{\mathbb{C}} HT_p(M)$ is constant on M.

We say that M has CR dimension m if $\dim_{\mathbb{C}} \operatorname{HT}_p(M) = m$, and we denote CR $\dim(M) = m$.

A totally real submanifold of \mathbb{C}^n is a CR submanifold of \mathbb{C}^n with CR dim(M) = 0. A complex valued smooth function f on M for which $\overline{\partial}_M f = 0$ on M is called a CR function on M.

THEOREM 2. Each point of a totally real submanifold $M \subset \mathbb{C}^n$ is an extreme point of M.

THEOREM 3. If M is a CR submanifold of \mathbb{C}^n without extreme points, then for any CR function f on M, |f| cannot have a strong local maximum at any point of M.

PROOF OF THEOREM 2. We know from [5] that there exists a nonnegative function $\varphi \in C^2(\mathbb{C}^n)$ strictly plurisubharmonic in a neighborhood D of M such that

$$M = \{ z \in D | \varphi(z) = 0 \} = \{ z \in D | \operatorname{grad} \varphi = 0 \}.$$

Let $p \in M$. We assume that p = 0 and in a neighborhood V of p we have $V \cap M = \{z \in V | \rho_1(z) = \cdots = \rho_q(z) = 0\}$ with $d\rho_1 \wedge \cdots \wedge d\rho_{q|0} \neq 0$.

Let $\rho = \varphi + \varepsilon \rho_1 \in C^2(V)$, where $\varepsilon > 0$ is chosen small enough such that the complex Hessian of ρ is strictly positive definite at the origin.

We have also $d\rho(0) = \varepsilon d\rho_1(0) \neq 0$ and we may assume that $(\partial \rho_1/\partial z_1)(0) \neq 0$, so $(\partial \rho/\partial z_1)(0) \neq 0$.

Because $\rho(0) = 0$ in a neighborhood of the origin we have:

$$\rho(z) = 2 \operatorname{Re} \sum_{i=1}^{n} \frac{\partial \rho}{\partial z_{i}}(0) z_{i} + \operatorname{Re} \left(\sum_{i,j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial z_{j}}(0) z_{i} z_{j} \right)$$

$$+ \sum_{i,j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial \overline{z}_{j}}(0) z_{i} \overline{z}_{j} + O(|z|^{3}).$$

We make the holomorphic change of coordinates in \mathbb{C}^n :

$$z_1' = 2i \sum_{i=1}^n \frac{\partial \rho}{\partial z_i}(0) z_i + i \sum_{i,j=1}^n \frac{\partial^2 \rho}{\partial z_i \partial z_j}(0) z_i z_j, \qquad z_i' = z_i \text{ for } 2 \leqslant i \leqslant n.$$

In the new coordinates we have

$$\rho(z') = -y_1' + \sum_{i,j=1}^{n} a_{ij} z_i' \bar{z}_j' + O(|z'|^3)$$

with $\sum_{i,j=1}^{n} a_{ij} z' z'_{i}$ strictly positive definite.

Define $S = \{z \in V | \rho(z) = 0\}.$

It follows that $S \subset \{z'|y_1' \ge 0\}$ in the neighborhood of the origin and because $M \cap V \subset S$ the theorem is proved.

PROOF OF THEOREM 3. We shall use the following lemma [2]:

LEMMA 1. Let Ω be an open subset of R^N with coordinates x_1, \ldots, x_N . Let $F \in C^{\infty}(\Omega)$ and L be a compact subset of Ω . Suppose that $F(x) < \max_L F$ for each $x \in \Omega - L$. Then for any open set Ω_1 with $L \subset \Omega_1 \subset \Omega$, there exists a point $y \in \Omega_1$ such that the Hessian of F at y is strictly negative definite.

We denote $d = \dim_R M$, q = 2n - d and $m = CR \dim M$.

Let us suppose that there exists a CR function f on M such that |f| has a point of strong local maximum. Then there exists a compact set $K \subset M$ such that $\max_K |f| > \max_{\partial K} |f|$. We may assume that K is contained in an open set in R^d which is part of the atlas that defines M. We may assume also that $\max_K \operatorname{Re} f > \max_{\partial K} \operatorname{Re} f$. Let us denote $\operatorname{Re} f = \varphi$.

By Lemma 1 there is $p \in K$ such that $((\partial^2 \varphi / \partial t_i \partial t_j)(p))_{1 \le i \le d, 1 \le j \le d}$ is strictly negative definite for any real coordinates (t_1, \ldots, t_d) in a neighborhood of p.

From Theorem 2, we obtain that $m \ge 1$. We denote s = d - 2m and r = m - (d - n).

After a complex linear change of coordinates in \mathbb{C}^n , M may be represented in the neighborhood of the point p by the equations

$$z_{j} = x_{j} + ig^{j}(x, w),$$
 $j = 1, ..., s,$
 $z_{j+s} = h^{j}(x, w),$ $j = 1, ..., r,$
 $z_{j+s+r} = w_{j},$ $j = 1, ..., m,$

where p corresponds to the origin and $\{g^j\}_{j=1,\ldots,s}$, $\{h^j\}_{j=1,\ldots,r}$ are real and complex valued functions respectively vanishing to second order at the origin [7].

Therefore, if

(1)
$$\rho_1 = y_1 - g^1(x, z), \dots, \rho_s = y_s - g^s(x, z),$$

$$\rho_{s+1} = x_{s+1} - \operatorname{Re} h^1(x, z),$$

$$\rho_{s+2} = y_{s+1} - \operatorname{Im} h^1(x, z), \dots, \rho_a = y_{s+r} - \operatorname{Im} h^r(x, z),$$

where $x = (x_1, ..., x_s)$ and $z = (z_{s+r+1}, ..., z_n)$, then in a neighborhood of the origin we have

$$M = \left\{ z | \rho_1(z) = \cdots = \rho_q(z) = 0 \right\},\,$$

 $d\rho_1 \wedge \cdots \wedge d\rho_{q|0} \neq 0$ and $d\rho_1(0), \ldots, d\rho_q(0)$ are orthonormal.

 φ is the real part of a CR function so $(\partial \bar{\partial})_b \varphi = 0$ [3].

If $\tilde{\varphi}$ is a real extension of φ , then in a neighborhood U of p in \mathbb{C}^n we obtain

$$\partial \bar{\partial} \tilde{\varphi} = \sum_{k=1}^{q} a_k \rho_k + \sum_{k=1}^{q} b_k \partial \rho_k + \sum_{k=1}^{q} c_k \bar{\partial} \rho_k + \sum_{k=1}^{q} d_k \partial \bar{\partial} \rho_k$$

with $a_k \in C^{\infty}_{(1,1)}(U)$, $b_k \in C^{\infty}_{(0,1)}(U)$, $c_k \in C^{\infty}_{(1,0)}(U)$ and $d_k \in C^{\infty}(U)$ or,

(2)
$$\frac{\partial^2 \tilde{\varphi}}{\partial z_i \partial \bar{z}_j} = \sum_{k=1}^q a_{ijk} \rho_k + \sum_{k=1}^q b_{kj} \frac{\partial \rho_k}{\partial z_i} + \sum_{k=1}^q c_{ki} \frac{\partial \rho_k}{\partial \bar{z}_j} + \sum_{k=1}^q d_k \frac{\partial^2 \rho_k}{\partial z_i \partial \bar{z}_j}.$$

We choose an extension $\tilde{\varphi}$ of φ which is independent of the variables $y_1, \ldots, y_s, x_{s+1}, y_{s+1}, \ldots, x_{s+r}, y_{s+r}$ which are normal to M over the origin. Let $Z \in \mathrm{HT}_0(M)$, i.e.

$$Z = \sum_{i=1}^{n} z_{i} \left(\frac{\partial}{\partial z_{i}} \right)_{0} \text{ and } \sum_{i=1}^{n} z_{i} \frac{\partial \rho_{k}}{\partial z_{i}} (0) = 0,$$

 $k=1,\ldots,q.$

From (2) we obtain

(3)
$$\sum_{i,j=1}^{n} \frac{\partial^2 \tilde{\varphi}}{\partial z_i \partial \bar{z}_j}(0) z_i \bar{z}_j = \sum_{i,j=1}^{n} \sum_{k=1}^{q} d_k(0) \frac{\partial^2 \rho_k}{\partial z_i \partial \bar{z}_j}(0) z_i \bar{z}_j.$$

But, with the functions ρ_k given by (1), $Z \in \operatorname{HT}_0(M)$ if $z_1 = \cdots = z_{s+r} = 0$. It follows that

$$\sum_{i,j=1}^{n} \frac{\partial^{2} \widetilde{\varphi}}{\partial z_{i} \partial \overline{z}_{j}}(0) z_{i} \overline{z}_{j} = \sum_{i,j=1}^{m} \frac{\partial^{2} \varphi}{\partial w_{i} \partial \overline{w}_{j}}(0) w_{i} \overline{w}_{j},$$

which is strictly negative definite.

Indeed supposing that

$$\sum_{i,j=1}^{m} \frac{\partial^{2} \varphi}{\partial w_{i} \partial \overline{w}_{j}} (0) w_{i} \overline{w}_{j}$$

is not strictly negative definite, by making a complex linear change of coordinates w_1, \ldots, w_m , in the new coordinates w'_1, \ldots, w'_m we may assume

$$\frac{\partial^2 \varphi}{\partial w_1' \partial \overline{w}_1'}(0) \geqslant 0.$$

But

$$\frac{\partial^2 \varphi}{\partial w_1' \partial \overline{w}_1'}(0) = \frac{1}{4} \left(\frac{\partial^2 \varphi}{\partial u_1'^2}(0) + \frac{\partial^2 \varphi}{\partial v_1'^2}(0) \right),$$

where $w'_1 = u'_1 + iv'_1$ and this contradicts the fact that the real Hessian of φ at 0 is strictly negative definite.

Taking the real parts in (3) we obtain

$$\sum_{i,j=1}^{n} \frac{\partial^{2} \tilde{\varphi}}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j} = \sum_{k=1}^{q} \operatorname{Re} d_{k}(0) \left(\sum_{i,j=1}^{n} \frac{\partial^{2} \rho_{k}}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j} \right).$$

Hence if $\xi = \sum_{k=1}^{q} (-\operatorname{Re} d_k(0)) d\rho_k(0) \in N_0(M)$ it follows that L_p^{ξ} is strictly positive definite and by Proposition 2, p is an extreme point of M, which contradicts the fact that M has no extreme points.

REMARK. Professor Hugo Rossi pointed to me that Theorem 3 can be proved by using the approximation theorem of Baouendi and Trèves [1] and the techniques from his paper [6].

ACKNOWLEDGEMENT. I wish to thank the referee for his suggestions which simplified the proof of Theorem 3.

REFERENCES

- 1. M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), 387-421.
- 2. R. Basener, Nonlinear Cauchy-Riemann equations and q-pseudoconvexity, Duke Math. J. 43 (1976), 203-215.
 - 3. E. Bedford, $(\partial \bar{\partial})_b$ and the real parts of CR functions, Indiana Univ. Math. J. 29 (1980), 333-340.
- 4. D. Ellis, C. D. Hill and C. Seabury, *The maximum modulus principle I. Necessary conditions*, Indiana Univ. Math. J. **25** (1976), 709-715.
- 5. F. R. Harvey and R. O. Wells, Jr., Holomorphic approximation and hyperfunction theory on a C¹ totally real submanifold of a complex manifold, Math. Ann. 197 (1972), 287-318.
- 6. H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2) 74 (1961), 470-493.
- 7. R. O. Wells, Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245-262.

Institute of Mathematics, 14 Academiei Street, 70109 Bucharest, România