THE MAXIMUM MODULUS PRINCIPLE FOR CR FUNCTIONS

ANDREI IORDAN

Abstract

Let M be a CR submanifold of \mathbf{C}^{n} without extreme points. Then, the modulus of any CR function on M cannot have a strong local maximum at any point of M.

Preliminaries. Let M be a smooth manifold embedded as a locally closed real submanifold of \mathbf{C}^{n}. We denote by $\bar{\partial}_{M}$ the tangential Cauchy-Riemann operator on M induced by the Cauchy-Riemann operator $\bar{\partial}$ on \mathbf{C}^{n} and with $\mathrm{HT}_{p}(M)$ the holomorphic tangent space to M at a point $p \in M$.

Let us recall some of the definitions and results of [4].
Definition $1 . \bar{\partial}_{M}$ obeys the local maximum modulus principle on M if given any open connected set U in M and any u differentiable in U such that $\bar{\partial}_{M} u=0$ on U, then u cannot have a (weak) local maximum at any point of U unless u is constant on U.

Definition 2. We call a point $p \in M$ an extreme point of M if there exists a local holomorphic coordinate system $z=\left(z_{1}, \ldots, z_{n}\right)$ in a neighborhood U of p such that $z(p)=0$ and $M \cap U \subset\left\{z \mid y_{1} \geqslant 0\right\}$. Here we assume that locally near p, M is not contained in any \mathbf{C}^{k} for $k<n$.

Definition 3. (i) For any $p \in M$ and $X \in \mathrm{HT}_{p}(M)$ set $Z=X-i Y$, where $Y=J X \in \mathrm{HT}_{p}(M)$ and J is the multiplication with $(-1)^{1 / 2}$ which defines the complex structure on $\mathbf{R}^{2 n}$.

The Levi form at p assigns to Z the normal vector $L_{p}(Z)$ defined by $L_{p}(Z)=$ $B_{p}(X, X)+B_{p}(Y, Y)$, where B_{p} is the second fundamental form of M at p.
(ii) We denote $N_{p}(M)$ as the normal space of M at p.

For any $\xi \in N_{p}(M)$ the map L_{p}^{ξ} defined by $L_{p}^{\xi}(Z)=\left\langle L_{p}(Z), \xi\right\rangle$ is called the Levi form of M at p in the ξ direction. Here \langle,$\rangle represents the real inner product in$ $\mathbf{R}^{2 n}$.

We assume that $p=0$ and $\operatorname{codim}_{\mathbf{R}} M=q$. Then in a neighborhood U of the origin there are smooth real functions $\rho_{1}, \ldots, \rho_{q}$ such that $d \rho_{1} \wedge \cdots \wedge d \rho_{q \mid 0} \neq 0$ and

$$
M \cap U=\left\{z \in U \mid \rho_{1}(z)=\cdots=\rho_{q}(z)=0\right\} .
$$

We may assume that $d \rho_{1}(0), \ldots, d \rho_{q}(0)$ are orthonormal.

If $\xi \in N_{0}(M)$, then $\xi=\sum_{i=1}^{q} \xi_{i} d \xi_{i}(0)$ and if $Z=\sum_{j=1}^{n} w_{j}\left(\partial / \partial z_{j}\right) \in \mathrm{HT}_{0}(M)$, then $\sum_{j=1}^{n}\left(\partial \rho_{i} / \partial z_{j}\right)(0) w_{j}=0$ for $1 \leqslant i \leqslant q$.

In these conditions

$$
\begin{equation*}
L_{0}^{\xi}(Z)=-4 \sum_{i, j, k} \xi_{i} \frac{\partial^{2} \rho_{i}}{\partial z_{j} \partial \bar{z}_{k}}(0) w_{j} \bar{w}_{k} \tag{4}
\end{equation*}
$$

In [4] the following results are proved.
Proposition 1. If p is an extreme point of M, then there exists a normal direction $\xi \in N_{p}(M)$ such that L_{p}^{ξ} is positive definite.

Proposition 2. If for a point $p \in M$ there exists $\xi \in N_{p}(M)$ such that L_{p}^{ξ} is strictly positive definite, then p is an extreme point of M.

Theorem 1. If $\bar{\partial}_{M}$ obeys the local maximum modulus principle on M, then M can contain no extreme point.

In [4], it is conjectured that the converse of Theorem 1 is also true.
Statement of results. A submanifold M of \mathbf{C}^{n} is called a CR manifold if $\operatorname{dim}_{\mathbf{C}} \mathrm{HT}_{p}(M)$ is constant on M.

We say that M has CR dimension m if $\operatorname{dim}_{\mathbf{C}} \mathrm{HT}_{p}(M)=m$, and we denote $C R \operatorname{dim}(M)=m$.

A totally real submanifold of \mathbf{C}^{n} is a CR submanifold of \mathbf{C}^{n} with $\mathrm{CR} \operatorname{dim}(M)=0$.
A complex valued smooth function f on M for which $\overline{\mathrm{d}}_{M} f=0$ on M is called a CR function on M.

Theorem 2. Each point of a totally real submanifold $M \subset \mathbf{C}^{n}$ is an extreme point of M.

Theorem 3. If M is a CR submanifold of \mathbf{C}^{n} without extreme points, then for any CR function f on $M,|f|$ cannot have a strong local maximum at any point of M.

Proof of Theorem 2. We know from [5] that there exists a nonnegative function $\varphi \in C^{2}\left(\mathbf{C}^{n}\right)$ strictly plurisubharmonic in a neighborhood D of M such that

$$
M=\{z \in D \mid \varphi(z)=0\}=\{z \in D \mid \operatorname{grad} \varphi=0\}
$$

Let $p \in M$. We assume that $p=0$ and in a neighborhood V of p we have $V \cap M=\left\{z \in V \mid \rho_{1}(z)=\cdots=\rho_{q}(z)=0\right\}$ with $d \rho_{1} \wedge \cdots \wedge d \rho_{q \mid 0} \neq 0$.

Let $\rho=\varphi+\varepsilon \rho_{1} \in C^{2}(V)$, where $\varepsilon>0$ is chosen small enough such that the complex Hessian of ρ is strictly positive definite at the origin.

We have also $d \rho(0)=\varepsilon d \rho_{1}(0) \neq 0$ and we may assume that $\left(\partial \rho_{1} / \partial z_{1}\right)(0) \neq 0$, so $\left(\partial \rho / \partial z_{1}\right)(0) \neq 0$.

Because $\rho(0)=0$ in a neighborhood of the origin we have:

$$
\begin{aligned}
\rho(z)= & 2 \operatorname{Re} \sum_{i=1}^{n} \frac{\partial \rho}{\partial z_{i}}(0) z_{i}+\operatorname{Re}\left(\sum_{i, j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial z_{j}}(0) z_{i} z_{j}\right) \\
& +\sum_{i, j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j}+O\left(|z|^{3}\right) .
\end{aligned}
$$

We make the holomorphic change of coordinates in \mathbf{C}^{n} :

$$
z_{1}^{\prime}=2 i \sum_{i=1}^{n} \frac{\partial \rho}{\partial z_{i}}(0) z_{i}+i \sum_{i, j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial z_{j}}(0) z_{i} z_{j}, \quad z_{i}^{\prime}=z_{i} \text { for } 2 \leqslant i \leqslant n .
$$

In the new coordinates we have

$$
\rho\left(z^{\prime}\right)=-y_{1}^{\prime}+\sum_{i, j=1}^{n} a_{i j} z_{i}^{\prime} \bar{z}_{j}^{\prime}+O\left(\left|z^{\prime}\right|^{3}\right)
$$

with $\sum_{i, j=1}^{n} a_{i j} z^{\prime} z_{j}^{\prime}$ strictly positive definite.
Define $S=\{z \in V \mid \rho(z)=0\}$.
It follows that $S \subset\left\{z^{\prime} \mid y_{1}^{\prime} \geqslant 0\right\}$ in the neighborhood of the origin and because $M \cap V \subset S$ the theorem is proved.

Proof of Theorem 3. We shall use the following lemma [2]:
Lemma 1. Let Ω be an open subset of R^{N} with coordinates x_{1}, \ldots, x_{N}. Let $F \in C^{\infty}(\Omega)$ and L be a compact subset of Ω. Suppose that $F(x)<\max _{L} F$ for each $x \in \Omega-L$. Then for any open set Ω_{1} with $L \subset \Omega_{1} \subset \Omega$, there exists a point $y \in \Omega_{1}$ such that the Hessian of F at y is strictly negative definite.

We denote $d=\operatorname{dim}_{R} M, q=2 n-d$ and $m=\mathrm{CR} \operatorname{dim} M$.
Let us suppose that there exists a CR function f on M such that $|f|$ has a point of strong local maximum. Then there exists a compact set $K \subset M$ such that $\max _{K}|f|$ $>\max _{\partial K}|f|$. We may assume that K is contained in an open set in R^{d} which is part of the atlas that defines M. We may assume also that $\max _{K} \operatorname{Re} f>\max _{\partial K} \operatorname{Re} f$. Let us denote $\operatorname{Re} f=\varphi$.

By Lemma 1 there is $p \in K$ such that $\left(\left(\partial^{2} \varphi / \partial t_{i} \partial t_{j}\right)(p)\right)_{1 \leqslant i \leqslant d .1 \leqslant j \leqslant d}$ is strictly negative definite for any real coordinates $\left(t_{1}, \ldots, t_{d}\right)$ in a neighborhood of p.

From Theorem 2, we obtain that $m \geqslant 1$. We denote $s=d-2 m$ and $r=m-(d$ $-n)$.

After a complex linear change of coordinates in \mathbf{C}^{n}, M may be represented in the neighborhood of the point p by the equations

$$
\begin{array}{ll}
z_{j}=x_{j}+i g^{j}(x, w), & j=1, \ldots, s, \\
z_{j+s}=h^{j}(x, w), & j=1, \ldots, r \\
z_{j+s+r}=w_{j}, & j=1, \ldots, m
\end{array}
$$

where p corresponds to the origin and $\left\{g^{j}\right\}_{j=1, \ldots, s},\left\{h^{j}\right\}_{j=1, \ldots, r}$ are real and complex valued functions respectively vanishing to second order at the origin [7].

Therefore, if

$$
\begin{gather*}
\rho_{1}=y_{1}-g^{1}(x, z), \ldots, \rho_{s}=y_{s}-g^{s}(x, z) \\
\rho_{s+1}=x_{s+1}-\operatorname{Re} h^{1}(x, z) \tag{1}\\
\rho_{s+2}=y_{s+1}-\operatorname{Im} h^{1}(x, z), \ldots, \rho_{q}=y_{s+r}-\operatorname{Im} h^{r}(x, z)
\end{gather*}
$$

where $x=\left(x_{1}, \ldots, x_{s}\right)$ and $z=\left(z_{s+r+1}, \ldots, z_{n}\right)$, then in a neighborhood of the origin we have

$$
\begin{gathered}
M=\left\{z \mid \rho_{1}(z)=\cdots=\rho_{q}(z)=0\right\} \\
d \rho_{1} \wedge \cdots \wedge d \rho_{q \mid 0} \neq 0 \text { and } d \rho_{1}(0), \ldots, d \rho_{q}(0) \text { are orthonormal. }
\end{gathered}
$$

φ is the real part of a CR function so $(\partial \bar{\partial})_{b} \varphi=0[3]$.
If $\tilde{\varphi}$ is a real extension of φ, then in a neighborhood U of p in \mathbf{C}^{n} we obtain

$$
\partial \bar{\partial} \tilde{\varphi}=\sum_{k=1}^{q} a_{k} \rho_{k}+\sum_{k=1}^{q} b_{k} \partial \rho_{k}+\sum_{k=1}^{q} c_{k} \bar{\partial} \rho_{k}+\sum_{k=1}^{q} d_{k} \partial \bar{\partial} \rho_{k}
$$

with $a_{k} \in C_{(1,1)}^{\infty}(U), b_{k} \in C_{(0,1)}^{\infty}(U), c_{k} \in C_{(1,0)}^{\infty}(U)$ and $d_{k} \in C^{\infty}(U)$ or,

$$
\begin{equation*}
\frac{\partial^{2} \tilde{\varphi}}{\partial z_{i} \partial \bar{z}_{j}}=\sum_{k=1}^{q} a_{i j k} \rho_{k}+\sum_{k=1}^{q} b_{k j} \frac{\partial \rho_{k}}{\partial z_{i}}+\sum_{k=1}^{q} c_{k i} \frac{\partial \rho_{k}}{\partial \bar{z}_{j}}+\sum_{k=1}^{q} d_{k} \frac{\partial^{2} \rho_{k}}{\partial z_{i} \partial \bar{z}_{j}} . \tag{2}
\end{equation*}
$$

We choose an extension $\tilde{\varphi}$ of φ which is independent of the variables y_{1}, \ldots, y_{s}, $x_{s+1}, y_{s+1}, \ldots, x_{s+r}, y_{s+r}$ which are normal to M over the origin.

Let $Z \in \mathrm{HT}_{0}(M)$, i.e.

$$
Z=\sum_{i=1}^{n} z_{i}\left(\frac{\partial}{\partial z_{i}}\right)_{0} \quad \text { and } \quad \sum_{i=1}^{n} z_{i} \frac{\partial \rho_{k}}{\partial z_{i}}(0)=0
$$

$k=1, \ldots, q$.
From (2) we obtain

$$
\begin{equation*}
\sum_{i, j=1}^{n} \frac{\partial^{2} \tilde{\varphi}}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j}=\sum_{i, j=1}^{n} \sum_{k=1}^{q} d_{k}(0) \frac{\partial^{2} \rho_{k}}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j} \tag{3}
\end{equation*}
$$

But, with the functions ρ_{k} given by (1), $Z \in \mathrm{HT}_{0}(M)$ if $z_{1}=\cdots=z_{s+r}=0$.
It follows that

$$
\sum_{i, j=1}^{n} \frac{\partial^{2} \tilde{\varphi}}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j}=\sum_{i, j=1}^{m} \frac{\partial^{2} \varphi}{\partial w_{i} \partial \bar{w}_{j}}(0) w_{i} \bar{w}_{j},
$$

which is strictly negative definite.
Indeed supposing that

$$
\sum_{i, j=1}^{m} \frac{\partial^{2} \varphi}{\partial w_{i} \partial \bar{w}_{j}}(0) w_{i} \bar{w}_{j}
$$

is not strictly negative definite, by making a complex linear change of coordinates w_{1}, \ldots, w_{m}, in the new coordinates $w_{1}^{\prime}, \ldots, w_{m}^{\prime}$ we may assume

$$
\frac{\partial^{2} \varphi}{\partial w_{1}^{\prime} \partial \bar{w}_{1}^{\prime}}(0) \geqslant 0 .
$$

But

$$
\frac{\partial^{2} \varphi}{\partial w_{1}^{\prime} \partial \bar{w}_{1}^{\prime}}(0)=\frac{1}{4}\left(\frac{\partial^{2} \varphi}{\partial u_{1}^{\prime 2}}(0)+\frac{\partial^{2} \varphi}{\partial v_{1}^{\prime 2}}(0)\right),
$$

where $w_{1}^{\prime}=u_{1}^{\prime}+i v_{1}^{\prime}$ and this contradicts the fact that the real Hessian of φ at 0 is strictly negative definite.

Taking the real parts in (3) we obtain

$$
\sum_{i, j=1}^{n} \frac{\partial^{2} \tilde{\phi}}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j}=\sum_{k=1}^{q} \operatorname{Re} d_{k}(0)\left(\sum_{i, j=1}^{n} \frac{\partial^{2} \rho_{k}}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j}\right) .
$$

Hence if $\xi=\sum_{k=1}^{q}\left(-\operatorname{Re} d_{k}(0)\right) d \rho_{k}(0) \in N_{0}(M)$ it follows that L_{p}^{ξ} is strictly positive definite and by Proposition 2, p is an extreme point of M, which contradicts the fact that M has no extreme points.

Remark. Professor Hugo Rossi pointed to me that Theorem 3 can be proved by using the approximation theorem of Baouendi and Trèves [1] and the techniques from his paper [6].

Acknowledgement. I wish to thank the referee for his suggestions which simplified the proof of Theorem 3.

References

1. M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), 387-421.
2. R. Basener, Nonlinear Cauchy-Riemann equations and q-pseudoconvexity, Duke Math. J. 43 (1976), 203-215
3. E. Bedford, $(\partial \bar{\partial})_{b}$ and the real parts of $C R$ functions, Indiana Univ. Math. J. 29 (1980), 333-340
4. D. Ellis, C. D. Hill and C. Seabury, The maximum modulus principle I. Necessary conditions, Indiana Univ. Math. J. 25 (1976), 709-715.
5. F. R. Harvey and R. O. Wells, Jr., Holomorphic approximation and hyperfunction theory on a C^{1} totally real submanifold of a complex manifold, Math. Ann. 197 (1972), 287-318.
6. H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2) 74 (1961), 470-493.
7. R. O. Wells, Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245-262

Institute of Mathematics, 14 Academiei Street, 70109 Bucharest, România

