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A GENERALIZATION OF SLOWLY VARYING FUNCTIONS

D. DRASIN1 AND E. SENETA

Abstract. This note establishes that if the main part of the definition of a slowly

varying function is relaxed to the requirement that lim sup, _ x\p( Xx )/\p( x ) < ß <

oo for each X > 0, then \p(x) = L(x)6(x), where L is slowly varying and 6 is

bounded. This is done by obtaining a representation for the function \p.

1. Introduction. We are concerned with a function \p which is positive, finite,

measurable and defined on [A, oo) for some A > 0, and such that

(1) limsup ^^-<ß< oo

for each X > 0, where ß (> 1) is independent of X > 0. We shall call such a

function S — O varying. Notice that this definition of an S — O varying function

differs from that in [4, Appendix]; the reason for the redefinition will be made clear

shortly.

Condition (1) generalizes the notion of a slowly varying function [4], which

requires that lim,._„, \p(Xx)/\p(x) = 1; our development elucidates the structure of

S — O varying \p in relation to the properties of slowly varying functions.

Notice that (1) implies that

(2) 0<i<liminfÍfM
p      x—<x>    y(x)

for each X > 0. Passing to the usual additive reformulation, put f(x) = logice*).

Then (1) and (2) imply that

(3) V» G (-00,00),        limsup \f(x + u) - f(x) I ̂  K < 00,
x —* 00

where K can be taken as log ß. The main purpose of this note is to prove

Theorem. Suppose f is defined, finite and measurable on [B, 00) for some finite B.

Then f satisfies (3) for some K if and only if f has the representation

f(x) = a(x)+fe(u) du
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for all x > «0, where n0 (> B) is some fixed number,  a(x) is measurable and

bounded on [n(), oo), and e(x) is measurable on [n0, oo), with e(x) -» 0 as x -* oo.

For a slowly varying function in its additive version, K in (3) is zero. A bounded /

satisfying (3), where K cannot be taken as zero, is f(x) = (-1)'*'. An example of an

unbounded / of this kind can be obtained by adding the additive version of any

unbounded slowly varying function; e.g., f(x) = (-l)1*1 + logx.

To place our result within the context of existing theory of regular variation and

its generalizations, we return from the additive formulation to consider all measura-

ble functions \p which for x > Ax can be represented in the form

*(x) = expja(x) + f Mr)'-1 dt\,

where a(x) and ß(x) are measurable. We then have the following correspondences,

where the Theorem corresponds to IV:

1. \p slowly varying [4] » a(x) -* a, ß(x) —> 0.

II. \p R — O varying [4, Appendix] <=> a(x) bounded, ß(x) bounded.

III. xp ER varying [2, §2; 3, (3.8)] « a(x) -* a, ß(x) bounded.

IV. \p S — O varying <=> a(x) bounded, ß(x) -» 0.

It is clear that IV is a subclass of II, the 5 - O terminology being justified

because of the behaviour of ß(x). The example of an S — O varying function

mentioned earlier shows that IV is not a subclass of III. Finally, a positive

measurable function \p is S - O varying on [A, oo) if and only if it can be written in

the form \p(x) = L(x)0(x), x > A, where L is slowly varying at infinity and 9(x)

is such that 8(x) and l/6(x) are bounded on [A, oo). For further relaxation of

condition (1) see [1; 2, Corollary 3.4].

2. Results.

Lemma. Under the conditions of the Theorem and integer U,

(4) sup lim sup <    sup   \f(x + u) - f(x)\\ < oo.

Proof. By [1, Theorem 1], (3) implies that for any compact interval / in (-oo, oo),

-oo < liminf / inf {f(x + u) —/(*))>,    lim sup | sup(/(jc + u) - f(x))\ < oo,

whence

(5) limsup< sup|/(x + u) - f(x) \\ < oo.
X-* 00      '  KE / '

Now let C/2 exceed both sup^olimsup^^l/ix + u) - f(x)\ (from (3)), and

limsup^^supo,.,^,!/^ + u) - f(x)\ (from (5)). Then for any positive integer U

there exists X = X(U) > 0 such that for all x ^ X,

\f(x + k)-f(x)\<C/2       (fc-1,2.U),

sup   \f(x + u)-f(x)\<C/2.
OsS«<l
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Then for 0 < u < U and x > X,

\f(x + u) -f(x)\^\f(x +[«]) -f(x)\ + \f(x + u) -f(x +[u])\< C.    a

Proof of the Theorem. Define «0< nx < n2 < ■•• as follows. Let n0 > X(l)

be an integer. Having defined nk_Y, (4) allows us to find a positive integer mk such

that, on setting nk = nk_x + k(mk + 1),

(6) sup       sup     \f(x + u) -f(x)\ < C
x>nt   0<u<A + l

Now for each A: = 1,2,... and m = 0,1,.. .,mk define

e(x) = (/(«*_! + mk + k) -f(nk_x + mk))/k,

nk_x + mk < x < nk_x + mk + k.

On this interval \e(x)\ < C/k so e(x) -* 0 as x -> oo.

Now, given any x > n0, we may write it as x = nk_1 + mk + y for some

k G {1,2,... }, m € {0,..., mk) and 0 < y < k, so that

f(x)-f(n0) - f   e{u)du=f(x)-f{nk_x + mk)-( e(u) du
Jn0 Jnk_l+mk

= f{nk_i + mk+y) -f(nk_x + mk)

- £(/("*-i + mk + k) -f(nk_x + mk)),

which by (6) is in absolute value  < 2C.    D
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